
Fedora Messaging
Release 3.5.0

Jeremy Cline

Mar 20, 2024

USER GUIDE

1 Installation 3
1.1 PyPI . 3
1.2 Fedora . 3

2 Quick Start 5
2.1 Local Broker . 5
2.2 Fedora’s Public Broker . 6
2.3 Fedora’s Restricted Broker . 9

3 Configuration 11
3.1 Generic Options . 13
3.2 Publisher Options . 15
3.3 Consumer Options . 16

4 Publishing 19
4.1 Overview . 19
4.2 Introduction . 19
4.3 Handling Errors . 20

5 Message Schemas 21
5.1 Schema . 21
5.2 Message Conventions . 26
5.3 Packaging . 27
5.4 Upgrade and deprecation . 27

6 Consumers 29
6.1 Introduction . 29
6.2 Command Line Interface . 30
6.3 Consumer API . 30
6.4 systemd Service . 32

7 Available Schemas 33
7.1 anitya . 33
7.2 bodhi . 34
7.3 Copr . 35
7.4 fedocal . 35
7.5 elections . 36
7.6 git . 36
7.7 hotness . 36
7.8 planet . 36
7.9 ansible . 37

i

7.10 Koji . 37
7.11 mdapi . 37
7.12 fas . 37
7.13 nuancier . 38
7.14 Pagure . 38

8 Testing 41

9 Command Line Interface Manuals 43
9.1 fedora-messaging . 43

10 Installation 49
10.1 Installing the library . 49
10.2 Setting up RabbitMQ . 49
10.3 Configuration . 50

11 Using the API 51
11.1 Publishing . 51
11.2 Listening . 52

12 JSON schemas 55
12.1 Creating the schema package . 55
12.2 Writing the schema . 55
12.3 Testing it . 57
12.4 Using it . 57
12.5 Updating it . 58

13 Handling exceptions 59
13.1 When publishing . 59
13.2 When consuming . 59

14 Converting a fedmsg application 61
14.1 Converting publishers . 61
14.2 Converting consumers . 66

15 Developer Interface 69
15.1 Publishing . 70
15.2 Subscribing . 71
15.3 Signals . 73
15.4 Message Schemas . 74
15.5 Utilities . 81
15.6 Exceptions . 82
15.7 Configuration . 84

16 Message Format 85
16.1 Content Type . 85
16.2 Content Encoding . 85
16.3 Message ID . 85
16.4 Delivery Mode . 85
16.5 Headers . 86
16.6 Body . 87

17 Contributor guide 89
17.1 Quickstart . 89
17.2 Python Support . 89
17.3 Code Style . 89

ii

17.4 Tests . 90
17.5 Release notes . 90
17.6 Licensing . 90
17.7 Releasing . 91

18 Release Notes 93
18.1 3.5.0 (2024-03-20) . 93
18.2 3.4.1 (2023-05-26) . 94
18.3 3.4.0 (2023-05-26) . 94
18.4 3.3.0 (2023-03-31) . 94
18.5 3.2.0 (2022-10-17) . 94
18.6 3.1.0 (2022-09-13) . 95
18.7 3.0.2 (2022-05-19) . 95
18.8 3.0.1 (2022-05-12) . 96
18.9 3.0.0 (2021-12-14) . 96
18.10 2.1.0 (2021-05-12) . 97
18.11 2.0.2 (2020-08-04) . 98
18.12 2.0.1 (2020-01-02) . 98
18.13 2.0.0 (2019-12-03) . 99
18.14 1.7.2 (2019-08-02) . 100
18.15 v1.7.1 (2019-06-24) . 101
18.16 v1.7.0 (2019-05-21) . 101
18.17 v1.6.1 (2019-04-17) . 102
18.18 v1.6.0 (2019-04-04) . 103
18.19 v1.5.0 (2019-02-28) . 104
18.20 v1.4.0 (2019-02-07) . 104
18.21 v1.3.0 (2019-01-24) . 105
18.22 v1.2.0 (2019-01-21) . 105
18.23 v1.1.0 (2018-11-13) . 106
18.24 v1.0.1 (2018-10-10) . 106
18.25 v1.0.0 (2018-10-10) . 106
18.26 v1.0.0b1 . 107
18.27 v1.0.0a1 . 108

Python Module Index 109

Index 111

iii

iv

Fedora Messaging, Release 3.5.0

This package provides tools and APIs to make using Fedora’s messaging infrastructure easier. These include a frame-
work for declaring message schemas, a set of synchronous APIs to publish messages to AMQP brokers, a set of asyn-
chronous APIs to consume messages, and services to easily run consumers.

This library is designed to be a replacement for the PyZMQ-backed fedmsg library.

USER GUIDE 1

https://pyzmq.readthedocs.io/
https://github.com/fedora-infra/fedmsg/

Fedora Messaging, Release 3.5.0

2 USER GUIDE

CHAPTER

ONE

INSTALLATION

1.1 PyPI

The Python package is available on the Python Package Index (PyPI) as fedora-messaging:

$ pip install --user fedora-messaging

It is, of course, recommended that you install it in a Python virtual environment.

1.2 Fedora

The library is available in Fedora 29 and greater as fedora-messaging:

$ sudo dnf install fedora-messaging

3

https://pypi.org/project/fedora-messaging/

Fedora Messaging, Release 3.5.0

4 Chapter 1. Installation

CHAPTER

TWO

QUICK START

This is a quick-start guide that covers a few common use-cases and contains pointers to more in-depth documentation
for the curious.

2.1 Local Broker

To publish and consume messages locally can be a useful way to learn about the library, and is also helpful during
development of your application or service.

To install the message broker on Fedora:

$ sudo dnf install rabbitmq-server

RabbitMQ is also available in EPEL7, although it is quite old and the library is not regularly tested against it. You can
also install the broker from RabbitMQ directly if you are not using Fedora.

Next, it’s recommended that you enable the management interface:

$ sudo rabbitmq-plugins enable rabbitmq_management

This provides an HTTP interface and API, available at http://localhost:15672/ by default. The “guest” user with the
password “guest” is created by default.

Finally, start the broker:

$ sudo systemctl start rabbitmq-server

You should now be able to consume messages with the following Python script:

from fedora_messaging import api, config

config.conf.setup_logging()
api.consume(lambda message: print(message))

To learn more about consuming messages, check out the Consumers documentation.

You can publish messages with:

from fedora_messaging import api, config

config.conf.setup_logging()
api.publish(api.Message(topic="hello", body={"Hello": "world!"}))

To learn more about publishing messages, check out the Publishing documentation.

5

http://localhost:15672/

Fedora Messaging, Release 3.5.0

2.2 Fedora’s Public Broker

Fedora’s message broker has a publicly accessible virtual host located at amqps://rabbitmq.fedoraproject.org/
%2Fpublic_pubsub. This virtual host mirrors all messages published to the restricted /pubsub virtual host and allows
anyone to consume messages being published by the various Fedora services.

These public queues have some restrictions applied to them. Firstly, they are limited to about 50 megabytes in size,
so if your application cannot handle the message throughput messages will be automatically discarded once you hit
this limit. Secondly, queues that are set to be durable (in other words, not exclusive or auto-deleted) are automatically
deleted if they have no consumers after approximately an hour.

If you need more robust guarantees about message delivery, or if you need to publish messages into Fedora’s message
broker, contact the Fedora Infrastructure team about getting access to the private virtual host.

2.2.1 Getting Connected

The public virtual host still requires users to authenticate when connecting, so a public user has been created and its
private key and x509 certificate are distributed with fedora-messaging.

If fedora-messaging was installed via RPM, they should be in /etc/fedora-messaging/ along with a configuration
file called fedora.toml. If it’s been installed via pip, it’s easiest to get the key, certificate, and the CA certificate from
the upstream git repository and start with the following configuration file:

A basic configuration for Fedora's message broker, using the example callback
which simply prints messages to standard output.
#
This file is in the TOML format.
amqp_url = "amqps://fedora:@rabbitmq.fedoraproject.org/%2Fpublic_pubsub"
callback = "fedora_messaging.example:printer"

[tls]
ca_cert = "/etc/fedora-messaging/cacert.pem"
keyfile = "/etc/fedora-messaging/fedora-key.pem"
certfile = "/etc/fedora-messaging/fedora-cert.pem"

[client_properties]
app = "Example Application"
Some suggested extra fields:
URL of the project that provides this consumer
app_url = "https://github.com/fedora-infra/fedora-messaging"
Contact emails for the maintainer(s) of the consumer - in case the
broker admin needs to contact them, for e.g.
app_contacts_email = ["admin@fedoraproject.org"]

[exchanges."amq.topic"]
type = "topic"
durable = true
auto_delete = false
arguments = {}

Queue names *must* be in the normal UUID format: run "uuidgen" and use the
output as your queue name. If you don't define a queue here, the server will
generate a queue name for you. This queue will be non-durable, auto-deleted and

(continues on next page)

6 Chapter 2. Quick Start

https://raw.githubusercontent.com/fedora-infra/fedora-messaging/stable/configs/fedora-key.pem
https://raw.githubusercontent.com/fedora-infra/fedora-messaging/stable/configs/fedora-cert.pem
https://raw.githubusercontent.com/fedora-infra/fedora-messaging/stable/configs/cacert.pem

Fedora Messaging, Release 3.5.0

(continued from previous page)

exclusive.
If your queue is not exclusive, anyone can connect and consume from it, causing
you to miss messages, so do not share your queue name. Any queues that are not
auto-deleted on disconnect are garbage-collected after approximately one hour.
#
If you require a stronger guarantee about delivery, please talk to Fedora's
Infrastructure team.
#
[queues.00000000-0000-0000-0000-000000000000]
durable = false
auto_delete = true
exclusive = true
arguments = {}

If you use the server-generated queue names, you can leave out the "queue"
parameter in the bindings definition.
[[bindings]]
queue = "00000000-0000-0000-0000-000000000000"
exchange = "amq.topic"
routing_keys = ["#"] # Set this to the specific topics you are interested in.

[consumer_config]
example_key = "for my consumer"

[qos]
prefetch_size = 0
prefetch_count = 25

[log_config]
version = 1
disable_existing_loggers = true

[log_config.formatters.simple]
format = "[%(levelname)s %(name)s] %(message)s"

[log_config.handlers.console]
class = "logging.StreamHandler"
formatter = "simple"
stream = "ext://sys.stdout"

[log_config.loggers.fedora_messaging]
level = "INFO"
propagate = false
handlers = ["console"]

[log_config.loggers.twisted]
level = "INFO"
propagate = false
handlers = ["console"]

[log_config.loggers.pika]
level = "WARNING"

(continues on next page)

2.2. Fedora’s Public Broker 7

Fedora Messaging, Release 3.5.0

(continued from previous page)

propagate = false
handlers = ["console"]

If your consumer sets up a logger, you must add a configuration for it
here in order for the messages to show up. e.g. if it set up a logger
called 'example_printer', you could do:
#[log_config.loggers.example_printer]
#level = "INFO"
#propagate = false
#handlers = ["console"]

[log_config.root]
level = "ERROR"
handlers = ["console"]

Assuming the /etc/fedora-messaging/fedora.toml, /etc/fedora-messaging/cacert.pem, /etc/
fedora-messaging/fedora-key.pem, and /etc/fedora-messaging/fedora-cert.pem files exist, the
following command will create a configuration file called my_config.toml with a unique queue name for your
consumer:

$ sed -e "s/[0-9a-f]\{8\}-[0-9a-f]\{4\}-[0-9a-f]\{4\}-[0-9a-f]\{4\}-[0-9a-f]\{12\}/
→˓$(uuidgen)/g" \

/etc/fedora-messaging/fedora.toml > my_config.toml

Warning: Do not skip the step above. This is important because if there are multiple consumers on a queue the
broker delivers messages to them in a round-robin fashion. In other words, you’ll only get some of the messages
being sent.

Run a quick test to make sure you can connect to the broker. The configuration file comes with an example consumer
which simply prints the message to standard output:

$ fedora-messaging --conf my_config.toml consume

Alternatively, you can start a Python shell and use the API:

$ FEDORA_MESSAGING_CONF=my_config.toml python
>>> from fedora_messaging import api, config
>>> config.conf.setup_logging()
>>> api.consume(lambda message: print(message))

If all goes well, you’ll see a log entry similar to:

Successfully registered AMQP consumer Consumer(queue=af0f78d2-159e-4279-b404-
→˓7b8c1b4649cc, callback=<function printer at 0x7f9a59e077b8>)

This will be followed by the messages being sent inside Fedora’s Infrastructure. All that’s left to do is change the
callback in the configuration to use your consumer callback and adjusting the routing keys in your bindings to receive
only the messages your consumer is interested in.

8 Chapter 2. Quick Start

Fedora Messaging, Release 3.5.0

2.3 Fedora’s Restricted Broker

Connecting the Fedora’s private virtual host requires working with the Fedora infrastructure team. The current process
and configuration for this is documented in the infrastructure team’s development guide.

2.3. Fedora’s Restricted Broker 9

https://docs.fedoraproject.org/en-US/infra/developer_guide/messaging/

Fedora Messaging, Release 3.5.0

10 Chapter 2. Quick Start

CHAPTER

THREE

CONFIGURATION

fedora-messaging can be configured with the /etc/fedora-messaging/config.toml file or by setting the
FEDORA_MESSAGING_CONF environment variable to the path of the configuration file.

Each configuration option has a default value.

Table of Configuration Options

• Generic Options

– amqp_url

– passive_declares

– tls

– client_properties

– exchanges

– log_config

• Publisher Options

– publish_exchange

– topic_prefix

– publish_priority

• Consumer Options

– queues

– bindings

– callback

– consumer_config

– qos

A complete example TOML configuration:

A sample configuration for fedora-messaging. This file is in the TOML format.
amqp_url = "amqp://"
callback = "fedora_messaging.example:printer"
passive_declares = false
publish_exchange = "amq.topic"

(continues on next page)

11

Fedora Messaging, Release 3.5.0

(continued from previous page)

topic_prefix = ""

[tls]
ca_cert = "/etc/fedora-messaging/cacert.pem"
keyfile = "/etc/fedora-messaging/fedora-key.pem"
certfile = "/etc/fedora-messaging/fedora-cert.pem"

[client_properties]
app = "Example Application"

If the exchange or queue name has a "." in it, use quotes as seen here.
[exchanges."amq.topic"]
type = "topic"
durable = true
auto_delete = false
arguments = {}

[queues.my_queue]
durable = true
auto_delete = false
exclusive = false
arguments = {}

Note the double brackets below. To add another binding, add another
[[bindings]] section. To use multiple routing keys, just expand the list here.
[[bindings]]
queue = "my_queue"
exchange = "amq.topic"
routing_keys = ["#"]

[consumer_config]
example_key = "for my consumer"

[qos]
prefetch_size = 0
prefetch_count = 25

[log_config]
version = 1
disable_existing_loggers = true

[log_config.formatters.simple]
format = "[%(levelname)s %(name)s] %(message)s"

[log_config.handlers.console]
class = "logging.StreamHandler"
formatter = "simple"
stream = "ext://sys.stdout"

[log_config.loggers.fedora_messaging]
level = "INFO"
propagate = false

(continues on next page)

12 Chapter 3. Configuration

Fedora Messaging, Release 3.5.0

(continued from previous page)

handlers = ["console"]

Twisted is the asynchronous framework that manages the TCP/TLS connection, as well
as the consumer event loop. When debugging you may want to lower this log level.
[log_config.loggers.twisted]
level = "INFO"
propagate = false
handlers = ["console"]

Pika is the underlying AMQP client library. When debugging you may want to
lower this log level.
[log_config.loggers.pika]
level = "WARNING"
propagate = false
handlers = ["console"]

[log_config.root]
level = "ERROR"
handlers = ["console"]

3.1 Generic Options

These options apply to both consumers and publishers.

3.1.1 amqp_url

The AMQP broker to connect to. This URL should be in the format described by the pika.connection.
URLParameters documentation. This defaults to 'amqp://?connection_attempts=3&retry_delay=5.

Note: When using the Twisted consumer API, which the CLI does by default, any connection-related setting won’t
apply as Twisted manages the TCP/TLS connection.

3.1. Generic Options 13

https://pika.readthedocs.io/en/latest/modules/parameters.html#pika.connection.URLParameters
https://pika.readthedocs.io/en/latest/modules/parameters.html#pika.connection.URLParameters

Fedora Messaging, Release 3.5.0

3.1.2 passive_declares

A boolean to specify if queues and exchanges should be declared passively (i.e checked, but not actually created on the
server). Defaults to False.

3.1.3 tls

A dictionary of the TLS settings to use when connecting to the AMQP broker. The default is:

{
'ca_cert': '/etc/pki/tls/certs/ca-bundle.crt',
'keyfile': None,
'certfile': None,

}

The value of ca_cert should be the path to a bundle of CA certificates used to validate the certificate presented by the
server. The ‘keyfile’ and ‘certfile’ values should be to the client key and client certificate to use when authenticating
with the broker.

Note: The broker URL must use the amqps scheme. It is also possible to provide these setting via the amqp_url
setting using a URL-encoded JSON object. This setting is provided as a convenient way to avoid that.

3.1.4 client_properties

A dictionary that describes the client to the AMQP broker. This makes it easy to identify the application using a
connection. The dictionary can contain arbitrary string keys and values. The default is:

{
'app': 'Unknown',
'product': 'Fedora Messaging with Pika',
'information': 'https://fedora-messaging.readthedocs.io/en/stable/',
'version': 'fedora_messaging-<version> with pika-<version>',

}

Apps should set the app along with any additional keys they feel will help administrators when debugging application
connections. At a minimum, the recommended fields are:

• app_url: The value of this key should be a URL to the upstream project for the client.

• app_contacts_email: One or more emails of maintainers to contact with questions (if, for example, a client
is misbehaving, or a service disruption is about to occur).

Do not use the product, information, and version keys as these will be set automatically.

14 Chapter 3. Configuration

Fedora Messaging, Release 3.5.0

3.1.5 exchanges

A dictionary of exchanges that should be present in the broker. Each key should be an exchange name, and the value
should be a dictionary with the exchange’s configuration. Options are:

• type - the type of exchange to create.

• durable - whether or not the exchange should survive a broker restart.

• auto_delete - whether or not the exchange should be deleted once no queues are bound to it.

• arguments - dictionary of arbitrary keyword arguments for the exchange, which depends on the broker in use
and its extensions.

For example:

{
'my_exchange': {

'type': 'fanout',
'durable': True,
'auto_delete': False,
'arguments': {},

},
}

The default is to ensure the ‘amq.topic’ topic exchange exists which should be sufficient for most use cases.

3.1.6 log_config

A dictionary describing the logging configuration to use, in a format accepted by logging.config.dictConfig().

Note: Logging is only configured for consumers, not for producers.

3.2 Publisher Options

The following configuration options are publisher-related.

3.2.1 publish_exchange

A string that identifies the exchange to publish to. The default is amq.topic.

3.2.2 topic_prefix

A string that will be prepended to topics on sent messages. This is useful to migrate from fedmsg, but should not be
used otherwise. The default is an empty string.

3.2. Publisher Options 15

https://docs.python.org/3/library/logging.config.html#logging.config.dictConfig

Fedora Messaging, Release 3.5.0

3.2.3 publish_priority

A number that will be set as the priority for the messages. The range of possible priorities depends on the
x-max-priority argument of the destination queue, as described in RabbitMQ’s priority documentation. The de-
fault is None, which RabbitMQ will interpret as zero.

3.3 Consumer Options

The following configuration options are consumer-related.

3.3.1 queues

A dictionary of queues that should be present in the broker. Each key should be a queue name, and the value should be
a dictionary with the queue’s configuration. Options are:

• durable - whether or not the queue should survive a broker restart. This is set to False for the default queue.

• auto_delete - whether or not the queue should be deleted once the consumer disconnects. This is set to True
for the default queue.

• exclusive - whether or not the queue is exclusive to the current connection. This is set to False for the default
queue.

• arguments - dictionary of arbitrary keyword arguments for the queue, which depends on the broker in use and
its extensions. This is set to {} for the default queue

For example:

{
'my_queue': {

'durable': True,
'auto_delete': True,
'exclusive': False,
'arguments': {},

},
}

3.3.2 bindings

A list of dictionaries that define queue bindings to exchanges that consumers will subscribe to. The queue key is the
queue’s name. The exchange key should be the exchange name and the routing_keys key should be a list of routing
keys. For example:

[
{

'queue': 'my_queue',
'exchange': 'amq.topic',
'routing_keys': ['topic1', 'topic2.#'],

},
]

This would create two bindings for the my_queue queue, both to the amq.topic exchange. Consumers will consume
from both queues.

16 Chapter 3. Configuration

https://www.rabbitmq.com/priority.html

Fedora Messaging, Release 3.5.0

3.3.3 callback

The Python path of the callback. This should be in the format <module>:<object>. For example, if the callback was
called “my_callback” and was located in the “my_module” module of the “my_package” package, the path would be
defined as my_package.my_module:my_callback. The default is None.

Consult the Consumers documentation for details on implementing a callback.

3.3.4 consumer_config

A dictionary for the consumer to use as configuration. The consumer should access this key in its callback for any
configuration it needs. Defaults to an empty dictionary. If, for example, this dictionary contains the print_messages
key, the callback can access this configuration with:

from fedora_messaging import config

def callback(message):
if config.conf["consumer_config"]["print_messages"]:

print(message)

3.3.5 qos

The quality of service settings to use for consumers. This setting is a dictionary with two keys. prefetch_count
specifies the number of messages to pre-fetch from the server. Pre-fetching messages improves performance by reducing
the amount of back-and-forth between client and server. The downside is if the consumer encounters an unexpected
problem, messages won’t be returned to the queue and sent to a different consumer until the consumer times out.
prefetch_size limits the size of pre-fetched messages (in bytes), with 0 meaning there is no limit. The default
settings are:

{
'prefetch_count': 10,
'prefetch_size': 0,

}

3.3. Consumer Options 17

Fedora Messaging, Release 3.5.0

18 Chapter 3. Configuration

CHAPTER

FOUR

PUBLISHING

4.1 Overview

Publishing messages is simple. Messages are made up of a topic, some optional headers, and a body. Messages are
encapsulated in a fedora_messaging.message.Message object. For details on defining messages, see the Message
Schemas documentation. For details on the publishing API, see the Publishing API documentation.

4.1.1 Topics

Topics are strings of words separated by the . character, up to 255 characters. Topics are used by clients to filter
messages, so choosing a good topic helps reduce the number of messages sent to a client. Topics should start broadly
and become more specific.

4.1.2 Headers

Headers are key-value pairs attached that are useful for storing information about the message itself. This library adds
a header to every message with the fedora_messaging_schema key, pointing to the message schema used.

You should not use any key starting with fedora_messaging for yourself.

You can write Header Schema for your messages to enforce a particular schema.

4.1.3 Body

The only restrictions on the message body is that it must be serializable to a JSON object. You should write a Body
Schema for your messages to ensure you don’t change your message format unintentionally.

4.2 Introduction

To publish a message, first create a fedora_messaging.message.Message object, then pass it to the
fedora_messaging.api.publish() function:

from fedora_messaging import api, message

msg = message.Message(topic=u'nice.message', headers={u'niceness': u'very'},
body={u'encouragement': u"You're doing great!"})

api.publish(msg)

19

https://www.rabbitmq.com/amqp-0-9-1-reference.html#queue.bind.routing-key

Fedora Messaging, Release 3.5.0

The API relies on the Configuration you’ve provided to connect to the message broker and publish the message to an
exchange.

4.3 Handling Errors

Your message might fail to publish for a number of reasons, so you should be prepared to see (and potentially handle)
some errors.

4.3.1 Validation

The message you create may not be successfully validated against its schema. This is not an error you should catch,
since it must be fixed by the developer and cannot be recovered from.

4.3.2 Connection Errors

The publish API will attempt to reconnect to the broker several times before an exception is raised. Once this occurs it
is up to the application to decide what to do.

4.3.3 Rejected Messages

The broker may reject a message. This could occur because the message is too large, or because the publisher does not
have permission to publish messages with a particular topic, or some other reason.

20 Chapter 4. Publishing

CHAPTER

FIVE

MESSAGE SCHEMAS

Before you release your application, you should create a subclass of fedora_messaging.message.Message, define
a schema, define a default severity, and implement some methods.

5.1 Schema

Defining a message schema is important for several reasons.

First and foremost, if will help you (the developer) ensure you don’t accidentally change your message’s format. When
messages are being generated from, say, a database object, it’s easy to make a schema change to the database and
unintentionally alter your message, which breaks consumers of your message. Without a schema, you might not catch
this until you deploy your application and consumers start crashing. With a schema, you’ll get an error as you develop!

Secondly, it allows you to change your message format in a controlled fashion by versioning your schema. You can then
choose to implement methods one way or another based on the version of the schema used by a message. For details
on how to deprecate and upgrade message schemas, see Upgrade and deprecation.

Message schema are defined using JSON Schema. The complete API can be found in the Message Schemas API
documentation.

5.1.1 Header Schema

The default header schema declares that the header field must be a JSON object with several expected keys. You can
leave the schema as-is when you define your own message, or you can refine it. The base schema will always be enforced
in addition to your custom schema.

5.1.2 Body Schema

The default body schema simply declares that the header field must be a JSON object.

21

http://json-schema.org/

Fedora Messaging, Release 3.5.0

5.1.3 Example Schema

Copyright (C) 2018 Red Hat, Inc.
#
This program is free software; you can redistribute it and/or modify
it under the terms of the GNU General Public License as published by
the Free Software Foundation; either version 2 of the License, or
(at your option) any later version.
#
This program is distributed in the hope that it will be useful,
but WITHOUT ANY WARRANTY; without even the implied warranty of
MERCHANTABILITY or FITNESS FOR A PARTICULAR PURPOSE. See the
GNU General Public License for more details.
#
You should have received a copy of the GNU General Public License along
with this program; if not, write to the Free Software Foundation, Inc.,
51 Franklin Street, Fifth Floor, Boston, MA 02110-1301 USA.
"""This is an example of a message schema."""

from email.utils import parseaddr

from fedora_messaging import message

class BaseMessage(message.Message):
"""
You should create a super class that each schema version inherits from.
This lets consumers perform ``isinstance(msg, BaseMessage)`` if they are
receiving multiple message types and allows the publisher to change the
schema as long as they preserve the Python API.
"""

def __str__(self):
"""Return a complete human-readable representation of the message."""
return "Subject: {subj}\n{body}\n".format(

subj=self.subject, body=self.email_body
)

@property
def summary(self):

"""Return a summary of the message.

By convention, in Fedora all schemas should provide this property.
"""
return self.subject

@property
def subject(self):

"""The email's subject."""
return 'Message did not implement "subject" property'

@property
def email_body(self):

(continues on next page)

22 Chapter 5. Message Schemas

Fedora Messaging, Release 3.5.0

(continued from previous page)

"""The email message body."""
return 'Message did not implement "email_body" property'

@property
def url(self):

"""An URL to the email in HyperKitty

By convention, in Fedora all schemas should provide this property.

Returns:
str or None: A relevant URL.

"""
base_url = "https://lists.fedoraproject.org/archives"
archived_at = self._get_archived_at()
if archived_at and archived_at.startswith("<"):

archived_at = archived_at[1:]
if archived_at and archived_at.endswith(">"):

archived_at = archived_at[:-1]
if archived_at and archived_at.startswith("http"):

return archived_at
elif archived_at:

return base_url + archived_at
else:

return None

@property
def app_name(self):

"""The name of the application that generated the message.

By convention, in Fedora all schemas should provide this property.
"""
return "Mailman"

@property
def app_icon(self):

"""A URL to the icon of the application that generated the message.

By convention, in Fedora all schemas should provide this property.
"""
return "https://apps.fedoraproject.org/img/icons/hyperkitty.png"

@property
def usernames(self):

"""List of users affected by the action that generated this message."""
return []

@property
def packages(self):

"""List of packages affected by the action that generated this message."""
return []

def _get_username_from_from_header(self, from_header):

(continues on next page)

5.1. Schema 23

Fedora Messaging, Release 3.5.0

(continued from previous page)

"""Converts a From email header to a username."""
Extract the username
addr = parseaddr(from_header)[1]
return addr.split("@")[0]

class MessageV1(BaseMessage):
"""
A sub-class of a Fedora message that defines a message schema for messages
published by Mailman when it receives mail to send out.
"""

body_schema = {
"id": "http://fedoraproject.org/message-schema/mailman#",
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Schema for message sent to mailman",
"type": "object",
"properties": {

"mlist": {
"type": "object",
"properties": {

"list_name": {
"type": "string",
"description": "The name of the mailing list",

}
},

},
"msg": {

"description": "An object representing the email",
"type": "object",
"properties": {

"delivered-to": {"type": "string"},
"from": {"type": "string"},
"cc": {"type": "string"},
"to": {"type": "string"},
"x-mailman-rule-hits": {"type": "string"},
"x-mailman-rule-misses": {"type": "string"},
"x-message-id-hash": {"type": "string"},
"references": {"type": "string"},
"in-reply-to": {"type": "string"},
"message-id": {"type": "string"},
"archived-at": {"type": "string"},
"subject": {"type": "string"},
"body": {"type": "string"},

},
"required": ["from", "to", "subject", "body"],

},
},
"required": ["mlist", "msg"],

}

@property
(continues on next page)

24 Chapter 5. Message Schemas

Fedora Messaging, Release 3.5.0

(continued from previous page)

def subject(self):
"""The email's subject."""
return self.body["msg"]["subject"]

@property
def email_body(self):

"""The email message body."""
return self.body["msg"]["body"]

@property
def agent_name(self):

"""The username of the user who caused the action."""
return self._get_username_from_from_header(self.body["msg"]["from"])

def _get_archived_at(self):
return self.body["msg"]["archived-at"]

class MessageV2(BaseMessage):
"""
This is a revision from the MessageV1 schema which flattens the message
structure into a single object, but is backwards compatible for any users
that make use of the properties (``subject`` and ``body``).
"""

body_schema = {
"id": "http://fedoraproject.org/message-schema/mailman#",
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Schema for message sent to mailman",
"type": "object",
"required": ["mailing_list", "from", "to", "subject", "body"],
"properties": {

"mailing_list": {
"type": "string",
"description": "The name of the mailing list",

},
"delivered-to": {"type": "string"},
"from": {"type": "string"},
"cc": {"type": "string"},
"to": {"type": "string"},
"x-mailman-rule-hits": {"type": "string"},
"x-mailman-rule-misses": {"type": "string"},
"x-message-id-hash": {"type": "string"},
"references": {"type": "string"},
"in-reply-to": {"type": "string"},
"message-id": {"type": "string"},
"archived-at": {"type": "string"},
"subject": {"type": "string"},
"body": {"type": "string"},

},
}

(continues on next page)

5.1. Schema 25

Fedora Messaging, Release 3.5.0

(continued from previous page)

@property
def subject(self):

"""The email's subject."""
return self.body["subject"]

@property
def email_body(self):

"""The email message body."""
return self.body["body"]

@property
def agent_name(self):

"""The username of the user who caused the action."""
return self._get_username_from_from_header(self.body["from"])

def _get_archived_at(self):
return self.body["archived-at"]

Note that message schema can be composed of other message schema, and validation of fields can be much more
detailed than just a simple type check. Consult the JSON Schema documentation for complete details.

5.2 Message Conventions

5.2.1 Schema are Immutable

Message schema should be treated as immutable. Once defined, they should not be altered. Instead, define a new
schema class, mark the old one as deprecated, and remove it after an appropriate transition period.

5.2.2 Provide Accessors

The JSON schema ensures the message sent “on the wire” conforms to a particular format. Messages should provide
Python properties to access the deserialized JSON object. This Python API should maintain backwards compatibility
between schema. This shields consumers from changes in schema.

Useful Accessors

All available accessors are described in the Message Schemas API documentation ; here is a list of those we recommend
implementing to allow users to get notifications for your messages:

• __str__(): A human-readable representation of this message. This can be a multi-line string that forms the
body of an email notification.

• summary: A short, single-line, human-readable summary of the message, much like the subject line of an email.

• agent_name: The username of the user who caused the action.

• app_name: The name of the application that generated the message. This can be implemented as a class attribute
or as a property.

• app_icon: A URL to the icon of the application that generated the message. This can be implemented as a class
attribute or as a property.

26 Chapter 5. Message Schemas

http://json-schema.org/

Fedora Messaging, Release 3.5.0

• packages: A list of RPM packages affected by the action that generated this message, if any.

• flatpaks: A list of flatpaks affected by the action that generated this message, if any.

• modules: A list of modules affected by the action that generated this message, if any.

• containers: A list of containers affected by the action that generated this message, if any.

• usernames: A list of usernames affected by the action that generated this message. This may contain the
agent_name.

• groups: A list of group names affected by the action that generated this message.

• url: A URL to the action that caused this message to be emitted, if any.

• severity: An integer that indicates the severity of the message. This is used to determine what messages to
notify end users about and should be DEBUG , INFO , WARNING , or ERROR . The default is INFO , and can be set as
a class attribute or on an instance-by-instance basis.

5.3 Packaging

Finally, you must distribute your schema to clients. It is recommended that you maintain your message schema in your
application’s git repository in a separate Python package. The package name should be <your-app-name>-messages.

A complete sample schema package can be found in the fedora-messaging repository. This includes unit tests, the
schema classes, and a setup.py. You can adapt this boilerplate with the following steps:

• Change the package name from mailman_messages to <your-app-name>_messages in setup.py.

• Rename the mailman_messages directory to <your-app-name>_messages.

• Add your schema classes to messages.py and tests to tests/test_messages.py.

• Update the README file.

• Build the distribution with python setup.py sdist bdist_wheel.

• Upload the sdist and wheel to PyPI with twine.

• Submit an RPM package for it to Fedora and EPEL.

If you prefer CookieCutter, there is a template repository that you can use with the command:

cookiecutter gh:fedora-infra/cookiecutter-message-schemas

It will ask you for the application name and some other variables, and will create the package structure for you.

5.4 Upgrade and deprecation

Message schema classes should not be modified in a backwards-incompatible fashion. To facilitate the evolution of
schemas, we recommend including the schema version in the topic itself, such as myservice.myevent.v1.

When a backwards-incompatible change is required, create a new class with the topic ending in .v2, set the Message.
deprecated attribute to True on the old class, and send both versions for a reasonable period of time. Note that you
need to add the new class to the schema package’s entry points as well.

We leave the duration to the developer’s appreciation, since it depends on how many different consumers they expect
to have, whether they are only inside the Fedora infrastructure or outside too, etc. This duration can range from weeks
to months, possibly a year. At the time of this writing, Fedora’s message bus is very far from being overwhelmed by
messages, so you don’t need to worry about that.

5.3. Packaging 27

https://github.com/fedora-infra/fedora-messaging/tree/master/docs/sample_schema_package/
https://cookiecutter.readthedocs.io
https://github.com/fedora-infra/cookiecutter-message-schemas

Fedora Messaging, Release 3.5.0

Proceeding this way ensures that consumers subscribing to .v1 will not break when .v2 arrives, and can choose to
subscribe to the .v2 topic when they are ready to handle the new format. They will get a warning in their logs when
they receive deprecated messages, prompting them to upgrade.

When you add the new version, please upgrade the major version number of your schema package, and communicate
clearly that the old version is deprecated, including for how long you have decided to send both versions.

28 Chapter 5. Message Schemas

CHAPTER

SIX

CONSUMERS

This library is aimed at making implementing a message consumer as simple as possible by implementing common
boilerplate code and offering a command line interface to easily start a consumer as a service under init systems like
systemd.

6.1 Introduction

AMQP consumers configure a queue for their use in the message broker. When a message is published to an exchange
and matches the bindings the consumer has declared, the message is placed in the queue and eventually delivered to
the consumer. Fedora uses a topic exchange for general-purpose messages.

Fortunately, you don’t need to manage the connection to the broker or configure the queue. All you need to do is
to implement some code to run when a message is received. The API expects a callable object that accepts a single
positional argument:

from fedora_messaging import api, config

The fedora_messaging API does not automatically configure logging so as
to not destroy application logging setup. This is a convenience method
to configure the Python logger with the fedora-messaging logging config.
config.conf.setup_logging()

First, define a function to be used as our callback. This will be called
whenever a message is received from the server.
def printer_callback(message):

"""
Print the message to standard output.

Args:
message (fedora_messaging.message.Message): The message we received

from the queue.
"""
print(str(message))

Next, we need a queue to consume messages from. We can define
the queue and binding configurations in these dictionaries:
queues = {

'demo': {
'durable': False, # Delete the queue on broker restart
'auto_delete': True, # Delete the queue when the client terminates

(continues on next page)

29

https://www.rabbitmq.com/tutorials/amqp-concepts.html#consumers
https://www.rabbitmq.com/tutorials/amqp-concepts.html#queues
https://www.rabbitmq.com/tutorials/amqp-concepts.html#exchanges
https://www.rabbitmq.com/tutorials/amqp-concepts.html#bindings
https://www.rabbitmq.com/tutorials/amqp-concepts.html#exchange-topic

Fedora Messaging, Release 3.5.0

(continued from previous page)

'exclusive': False, # Allow multiple simultaneous consumers
'arguments': {},

},
}
binding = {

'exchange': 'amq.topic', # The AMQP exchange to bind our queue to
'queue': 'demo', # The unique name of our queue on the AMQP broker
'routing_keys': ['#'], # The topics that should be delivered to the queue

}

Start consuming messages using our callback. This call will block until
a KeyboardInterrupt is raised, or the process receives a SIGINT or SIGTERM
signal.
api.consume(printer_callback, bindings=binding, queues=queues)

In this example, there’s one queue and the queue only has one binding, but it’s possible to consume from multiple
queues and each queue can have multiple bindings.

6.2 Command Line Interface

A command line interface, fedora-messaging, is included to make running consumers easier. It’s not necessary to write
any boilerplate code calling the API, just run fedora-messaging consume and provide it the Python path to your
callback:

$ fedora-messaging consume --callback=fedora_messaging.example:printer

Consult the manual page for complete details on this command line interface.

Note: For users of fedmsg, this is roughly equivalent to fedmsg-hub

6.3 Consumer API

The introduction contains a very minimal callback. This section covers the complete API for consumers.

6.3.1 The Callback

The callback provided to fedora_messaging.api.consume() or the command-line interface can be any callable
Python object, so long as it accepts the message object as a single positional argument.

The API will also accept a Python class, which it will instantiate before using as a callable object. This allows you to
write a callback with easy one-time initialization or a callback that maintains state between calls:

import os

from fedora_messaging import config

(continues on next page)

30 Chapter 6. Consumers

Fedora Messaging, Release 3.5.0

(continued from previous page)

class SaveMessage:
"""
A fedora-messaging consumer that saves the message to a file.

A single configuration key is used from fedora-messaging's
"consumer_config" key, "path", which is where the consumer will save
the messages::

[consumer_config]
path = "/tmp/fedora-messaging/messages.txt"

"""

def __init__(self):
"""Perform some one-time initialization for the consumer."""
self.path = config.conf["consumer_config"]["path"]

Ensure the path exists before the consumer starts
if not os.path.exists(os.path.dirname(self.path)):

os.mkdir(os.path.dirname(self.path))

def __call__(self, message):
"""
Invoked when a message is received by the consumer.

Args:
message (fedora_messaging.api.Message): The message from AMQP.

"""
with open(self.path, "a") as fd:

fd.write(str(message))

When running this type of callback from the command-line interface, specify the Python path to the class object, not
the __call__ method:

$ fedora-messaging consume --callback=package_name.module:SaveMessage

6.3.2 Exceptions

• Consumers should raise the fedora_messaging.exceptions.Nack exception if the consumer cannot handle
the message at this time. The message will be re-queued, and the server will attempt to re-deliver it at a later
time.

• Consumers should raise the fedora_messaging.exceptions.Drop exception when they wish to explicitly
indicate they do not want handle the message. This is similar to simply calling return, but the server is informed
the client dropped the message. What the server does depends on configuration.

• Consumers should raise the fedora_messaging.exceptions.HaltConsumer exception if they wish to stop
consuming messages.

If a consumer raises any other exception, a traceback will be logged at the error level, the message being processed and
any pre-fetched messages will be returned to the queue for later delivery, and the consumer will be canceled.

If the CLI is being used, it will halt with a non-zero exit code. If the API is being used directly, consult the API
documentation for exact results, as the synchronous and asynchronous APIs communicate failures differently.

6.3. Consumer API 31

Fedora Messaging, Release 3.5.0

6.3.3 Synchronous and Asynchronous Calls

The AMQP consumer runs in a Twisted event loop. When a message arrives, it calls the callback in a separate Python
thread to avoid blocking vital operations like the connection heartbeat. The callback is free to use any blocking (syn-
chronous) calls it likes.

Note: Your callback does not need to be thread-safe. By default, messages are processed serially.

It is safe to start threads to perform IO-blocking work concurrently. If you wish to make use of a Twisted API, you
must use the twisted.internet.threads.blockingCallFromThread() or twisted.internet.interfaces.
IReactorFromThreads APIs.

You may also use asyncio-based asynchronous callbacks, either via an async function or via an object that has an
async __call__() method. In this case, the callback will not be run in a separate thread, it will instead be scheduled
as a regular asyncio task.

6.3.4 Consumer Configuration

A special section of the fedora-messaging configuration will be available for consumers to use if they need configuration
options. Refer to the consumer_config in the Configuration documentation for details.

6.4 systemd Service

A systemd service file is also included in the Python package for your convenience. It is called fm-consumer@.
service and simply runs fedora-messaging consume with a configuration file from /etc/fedora-messaging/
that matches the service name:

$ systemctl start fm-consumer@sample.service # uses /etc/fedora-messaging/sample.toml

32 Chapter 6. Consumers

https://docs.twisted.org/en/stable/api/twisted.internet.threads.html#blockingCallFromThread
https://docs.twisted.org/en/stable/api/twisted.internet.interfaces.IReactorFromThreads.html
https://docs.twisted.org/en/stable/api/twisted.internet.interfaces.IReactorFromThreads.html

CHAPTER

SEVEN

AVAILABLE SCHEMAS

These are the topics that you can expect to see on Fedora’s message bus, sorted by the python package that contains
their schema. Install the corresponding python package if you want to make use of the schema and access additional
information on the message you’re receiving.

In the Fedora Infrastructure, some of those topics will be prefixed by org.fedoraproject.stg. in staging and org.
fedoraproject.prod. in production.

7.1 anitya

You can view the history of all anitya messages in datagrepper.

• org.release-monitoring.prod.anitya.distro.add: Message sent by Anitya to the “anitya.distro.add”
topic when a new distribution is added. (history)

• org.release-monitoring.prod.anitya.distro.edit: Message sent by Anitya when a distribution is
edited. (history)

• org.release-monitoring.prod.anitya.distro.remove: Message sent by Anitya when a distribution is
removed. (history)

• org.release-monitoring.prod.anitya.project.add: The message sent when a new project is created
in Anitya. (history)

• org.release-monitoring.prod.anitya.project.edit: The message sent when a project is edited in An-
itya. (history)

• org.release-monitoring.prod.anitya.project.flag: Sent when a new flag is created for a project.
(history)

• org.release-monitoring.prod.anitya.project.flag.set: Sent when a flag is closed for a project.
(history)

• org.release-monitoring.prod.anitya.project.map.new: Sent when new distribution mapping is cre-
ated in Anitya. (history)

• org.release-monitoring.prod.anitya.project.map.remove: Sent when distribution mapping is
deleted in Anitya. (history)

• org.release-monitoring.prod.anitya.project.map.update: Sent when distribution mapping is edited
in Anitya. (history)

• org.release-monitoring.prod.anitya.project.remove: The message sent when a project is deleted in
Anitya. (history)

• org.release-monitoring.prod.anitya.project.version.remove: Sent when version is deleted in An-
itya. (history)

33

https://apps.fedoraproject.org/datagrepper/raw?category=anitya
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.distro.add
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.distro.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.distro.remove
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.add
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.flag
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.flag.set
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.map.new
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.map.remove
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.map.update
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.remove
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.version.remove

Fedora Messaging, Release 3.5.0

• org.release-monitoring.prod.anitya.project.version.remove.v2: Sent when version is deleted in
Anitya. (history)

• org.release-monitoring.prod.anitya.project.version.update: Sent when new version is discov-
ered by Anitya. This message will be deprecated in future. (history)

• org.release-monitoring.prod.anitya.project.version.update.v2: Sent when new versions are
discovered by Anitya. (history)

7.2 bodhi

You can view the history of all bodhi messages in datagrepper.

• bodhi.buildroot_override.tag: Sent when a buildroot override is added and tagged into the build root.
(history)

• bodhi.buildroot_override.untag: Sent when a buildroot override is untagged from the build root. (his-
tory)

• bodhi.compose.complete: Sent when a compose task completes. (history)

• bodhi.compose.composing: Sent when the compose task composes. (history)

• bodhi.compose.start: Sent when a compose task starts. (history)

• bodhi.compose.sync.done: Sent when a compose task sync is done. (history)

• bodhi.compose.sync.wait: Sent when a compose task sync is waiting. (history)

• bodhi.errata.publish: Sent when an errata is published. (history)

• bodhi.repo.done: Sent when a repo is created and ready to be signed or otherwise processed. (history)

• bodhi.update.comment: Sent when a comment is made on an update. (history)

• bodhi.update.complete.stable: Sent when an update is available in the stable repository. (history)

• bodhi.update.complete.testing: Sent when an update is available in the testing repository. (history)

• bodhi.update.edit: Sent when an update is edited. (history)

• bodhi.update.edit: Sent when an update is edited. Newer version. Has ‘new_builds’ and ‘removed_builds’
properties. (history)

• bodhi.update.eject: Sent when an update is ejected from the push. (history)

• bodhi.update.karma.threshold.reach: Sent when an update reaches its karma threshold. (history)

• bodhi.update.request.obsolete: Sent when an update is requested to be obsoleted. (history)

• bodhi.update.request.revoke: Sent when an update is revoked. (history)

• bodhi.update.request.stable: Sent when an update is submitted as a stable candidate. (history)

• bodhi.update.request.testing: Sent when an update is submitted as a testing candidate. (history)

• bodhi.update.request.unpush: Sent when an update is requested to be unpushed. (history)

• bodhi.update.requirements_met.stable: Sent when all the update requirements are met for stable. (his-
tory)

• bodhi.update.status.testing.koji-build-group.build.complete: Sent when an update is ready to
be tested. Original version. Does not have ‘update’ property or inherit from UpdateMessage. (history)

34 Chapter 7. Available Schemas

https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.version.remove.v2
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.version.update
https://apps.fedoraproject.org/datagrepper/raw?topic=org.release-monitoring.prod.anitya.project.version.update.v2
https://apps.fedoraproject.org/datagrepper/raw?category=bodhi
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.buildroot_override.tag
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.buildroot_override.untag
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.buildroot_override.untag
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.compose.complete
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.compose.composing
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.compose.start
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.compose.sync.done
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.compose.sync.wait
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.errata.publish
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.repo.done
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.comment
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.complete.stable
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.complete.testing
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.eject
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.karma.threshold.reach
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.request.obsolete
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.request.revoke
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.request.stable
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.request.testing
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.request.unpush
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.requirements_met.stable
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.requirements_met.stable
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.status.testing.koji-build-group.build.complete

Fedora Messaging, Release 3.5.0

• bodhi.update.status.testing.koji-build-group.build.complete: Sent when an update is ready to
be tested. Newer version. Has ‘update’ property, like other update messages. (history)

7.3 Copr

You can view the history of all Copr messages in datagrepper.

• copr.build.end: schema for the old fedmsg-era ‘copr.build.end’ message (history)

• copr.build.start: schema for the old fedmsg-era ‘copr.build.start’ message (history)

• copr.chroot.start: Schema for the old fedmsg-era ‘copr.chroot.start’ message, this message duplicated the
‘copr.build.start’ message, so you should never use this. (history)

• build.end (history)

• build.start (history)

• chroot.start (history)

7.4 fedocal

You can view the history of all fedocal messages in datagrepper.

• fedocal.calendar.clear: A sub-class of a Fedora message that defines a message schema for messages
published by fedocal when a calendar is cleared. (history)

• fedocal.calendar.delete: A sub-class of a Fedora message that defines a message schema for messages
published by fedocal when a calendar is deleted. (history)

• fedocal.calendar.new: A sub-class of a Fedora message that defines a message schema for messages pub-
lished by fedocal when a calendar is created. (history)

• fedocal.calendar.update: A sub-class of a Fedora message that defines a message schema for messages
published by fedocal when a calendar is updated. (history)

• fedocal.calendar.upload: A sub-class of a Fedora message that defines a message schema for messages
published by fedocal when meetings have been uploaded into the calendar. (history)

• fedocal.meeting.delete: A sub-class of a Fedora message that defines a message schema for messages
published by fedocal when a meeting is deleted. (history)

• fedocal.meeting.new: A sub-class of a Fedora message that defines a message schema for messages published
by fedocal when a meeting is created. (history)

• fedocal.meeting.reminder: A sub-class of a Fedora message that defines a message schema for messages
published by fedocal when a reminder is sent. (history)

• fedocal.meeting.update: A sub-class of a Fedora message that defines a message schema for messages
published by fedocal when a meeting is updated. (history)

7.3. Copr 35

https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.bodhi.update.status.testing.koji-build-group.build.complete
https://apps.fedoraproject.org/datagrepper/raw?category=copr
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.copr.build.end
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.copr.build.start
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.copr.chroot.start
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.build.end
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.build.start
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.chroot.start
https://apps.fedoraproject.org/datagrepper/raw?category=fedocal
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.calendar.clear
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.calendar.delete
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.calendar.new
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.calendar.update
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.calendar.upload
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.meeting.delete
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.meeting.new
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.meeting.reminder
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedocal.meeting.update

Fedora Messaging, Release 3.5.0

7.5 elections

You can view the history of all elections messages in datagrepper.

• fedora_elections.candidate.delete: A sub-class of a Fedora message that defines a message schema for
messages published by Elections when a candidate is deleted. (history)

• fedora_elections.candidate.edit: A sub-class of a Fedora message that defines a message schema for
messages published by Elections when a candidate is edited. (history)

• fedora_elections.candidate.new: A sub-class of a Fedora message that defines a message schema for
messages published by Elections when a new candidate is added. (history)

• fedora_elections.election.edit: A sub-class of a Fedora message that defines a message schema for
messages published by Elections when an election is edited. (history)

• fedora_elections.election.new: A sub-class of a Fedora message that defines a message schema for mes-
sages published by Elections when a new election is created. (history)

7.6 git

You can view the history of all git messages in datagrepper.

• git.receive: A sub-class of a Fedora message that defines a message schema for messages published by Fedora
Messaging Git Hook when a new commit is received. (history)

7.7 hotness

You can view the history of all hotness messages in datagrepper.

• org.fedoraproject.prod.hotness.update.bug.file: Message sent by the-new-hotness to “hot-
ness.update.bug.file” topic when bugzilla issue is filled. (history)

• org.fedoraproject.prod.hotness.update.drop: Message sent by the-new-hotness to “hot-
ness.update.drop” topic when update is dropped. (history)

7.8 planet

You can view the history of all planet messages in datagrepper.

• org.fedoraproject.prod.planet.post.new: The message sent when a new post is published in planet.
(history)

36 Chapter 7. Available Schemas

https://apps.fedoraproject.org/datagrepper/raw?category=fedora_elections
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedora_elections.candidate.delete
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedora_elections.candidate.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedora_elections.candidate.new
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedora_elections.election.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fedora_elections.election.new
https://apps.fedoraproject.org/datagrepper/raw?category=git
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.git.receive
https://apps.fedoraproject.org/datagrepper/raw?category=hotness
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.hotness.update.bug.file
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.hotness.update.drop
https://apps.fedoraproject.org/datagrepper/raw?category=planet
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.planet.post.new

Fedora Messaging, Release 3.5.0

7.9 ansible

You can view the history of all ansible messages in datagrepper.

• ansible.playbook.complete: Defines the message that is sent when an Ansible Playbook completes (history)

• ansible.playbook.start: Defines the message that is sent when an Ansible Playbook starts (history)

• git.receive: Defines the message that is sent when an Ansible Playbook starts (history)

7.10 Koji

You can view the history of all Koji messages in datagrepper.

• buildsys.build.state.change: This message is sent when a build state changes. (history)

• buildsys.package.list.change: This message is sent when a package list changes. (history)

• buildsys.repo.done: This message is sent when a package repo is done. (history)

• buildsys.repo.init: This message is sent when a package repo is initialized. (history)

• buildsys.rpm.sign: This message is sent when a rpm is signed. (history)

• buildsys.tag: This message is sent when a package is tagged. (history)

• buildsys.untag: This message is sent when a package is untagged. (history)

• buildsys.task.state.change: This message is sent when a task state changes. (history)

7.11 mdapi

You can view the history of all mdapi messages in datagrepper.

• mdapi.repo.update: A sub-class of a Fedora message that defines a message schema for messages published
by mdapi when a repo’s info is updated. (history)

7.12 fas

You can view the history of all fas messages in datagrepper.

• fas.group.member.sponsor: The message sent when a user is added to a group by a sponsor (history)

• fas.user.create: The message sent when a user is created (history)

• fas.user.update: The message sent when a user is updated (history)

7.9. ansible 37

https://apps.fedoraproject.org/datagrepper/raw?category=ansible
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.ansible.playbook.complete
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.ansible.playbook.start
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.git.receive
https://apps.fedoraproject.org/datagrepper/raw?category=buildsys
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.build.state.change
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.package.list.change
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.repo.done
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.repo.init
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.rpm.sign
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.tag
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.untag
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.buildsys.task.state.change
https://apps.fedoraproject.org/datagrepper/raw?category=mdapi
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.mdapi.repo.update
https://apps.fedoraproject.org/datagrepper/raw?category=fas
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fas.group.member.sponsor
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fas.user.create
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.fas.user.update

Fedora Messaging, Release 3.5.0

7.13 nuancier

You can view the history of all nuancier messages in datagrepper.

• nuancier.new: A sub-class of a Fedora message that defines a message schema for messages published by
nuancier when a new thing is created. (history)

7.14 Pagure

You can view the history of all Pagure messages in datagrepper.

• pagure.Test.notification: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.commit.flag.added: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.commit.flag.updated: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.git.branch.creation: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.git.branch.deletion: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.git.receive: A sub-class of a Fedora message that defines a message schema for messages published
by pagure when a new thing is created. (history)

• pagure.git.tag.creation: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.git.tag.deletion: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.group.edit: A sub-class of a Fedora message that defines a message schema for messages published
by pagure when a new thing is created. (history)

• pagure.issue.assigned.added: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when an issue is assigned. (history)

• pagure.issue.assigned.reset: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when an issue is un-assigned. (history)

• pagure.issue.comment.added: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a comment is added to an issue. (history)

• pagure.issue.dependency.added: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when a dependency is added to an issue. (history)

• pagure.issue.dependency.removed: A sub-class of a Fedora message that defines a message schema for
messages published by pagure when an issue is deleted. (history)

• pagure.issue.drop: A sub-class of a Fedora message that defines a message schema for messages published
by pagure when an issue is deleted. (history)

• pagure.issue.edit: A sub-class of a Fedora message that defines a message schema for messages published
by pagure when an issue is updated. (history)

• pagure.issue.new: A sub-class of a Fedora message that defines a message schema for messages published
by pagure when a new thing is created. (history)

38 Chapter 7. Available Schemas

https://apps.fedoraproject.org/datagrepper/raw?category=nuancier
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.nuancier.new
https://apps.fedoraproject.org/datagrepper/raw?category=pagure
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.Test.notification
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.commit.flag.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.commit.flag.updated
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.git.branch.creation
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.git.branch.deletion
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.git.receive
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.git.tag.creation
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.git.tag.deletion
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.group.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.assigned.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.assigned.reset
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.comment.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.dependency.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.dependency.removed
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.drop
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.new

Fedora Messaging, Release 3.5.0

• pagure.issue.tag.added: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when an issue is deleted. (history)

• pagure.issue.tag.removed: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when an issue is deleted. (history)

• pagure.project.deleted: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.project.edit: A sub-class of a Fedora message that defines a message schema for messages published
by pagure when a new thing is created. (history)

• pagure.project.forked: A sub-class of a Fedora message that defines a message schema for messages pub-
lished by pagure when a new thing is created. (history)

• pagure.project.group.access.updated: A sub-class of a Fedora message that defines a message schema
for messages published by pagure when a new thing is created. (history)

• pagure.project.group.added: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.project.group.removed: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when a new thing is created. (history)

• pagure.project.new: A sub-class of a Fedora message that defines a message schema for messages published
by pagure when a new thing is created. (history)

• pagure.project.tag.edited: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.project.tag.removed: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.project.user.access.updated: A sub-class of a Fedora message that defines a message schema
for messages published by pagure when a new thing is created. (history)

• pagure.project.user.added: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a new thing is created. (history)

• pagure.project.user.removed: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when a new thing is created. (history)

• pagure.pull-request.assigned.added: A sub-class of a Fedora message that defines a message schema
for messages published by pagure when a pull request is assigned. (history)

• pagure.pull-request.assigned.reset: A sub-class of a Fedora message that defines a message schema
for messages published by pagure when a pull request is un-assigned. (history)

• pagure.pull-request.closed: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a pull request is closed. (history)

• pagure.pull-request.comment.added: A sub-class of a Fedora message that defines a message schema for
messages published by pagure when a comment is added to a PR. (history)

• pagure.pull-request.comment.edited: A sub-class of a Fedora message that defines a message schema
for messages published by pagure when a comment is edited on a PR. (history)

• pagure.pull-request.flag.added: A sub-class of a Fedora message that defines a message schema for
messages published by pagure when a flag is added on a PR. (history)

• pagure.pull-request.flag.updated: A sub-class of a Fedora message that defines a message schema for
messages published by pagure when a flag is updated on a PR (history)

7.14. Pagure 39

https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.tag.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.issue.tag.removed
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.deleted
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.edit
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.forked
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.group.access.updated
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.group.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.group.removed
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.new
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.tag.edited
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.tag.removed
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.user.access.updated
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.user.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.project.user.removed
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.assigned.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.assigned.reset
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.closed
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.comment.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.comment.edited
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.flag.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.flag.updated

Fedora Messaging, Release 3.5.0

• pagure.pull-request.initial_comment.edited: A sub-class of a Fedora message that defines a message
schema for messages published by pagure when an initial PR comment is edited. (history)

• pagure.pull-request.new: A sub-class of a Fedora message that defines a message schema for messages
published by pagure when a pull request is created. (history)

• pagure.pull-request.rebased: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when a PR is rebased. (history)

• pagure.pull-request.reopened: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when a PR is reopened. (history)

• pagure.pull-request.tag.added: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when a tag is added on a PR. (history)

• pagure.pull-request.tag.removed: A sub-class of a Fedora message that defines a message schema for
messages published by pagure when a tag is removed on a PR. (history)

• pagure.pull-request.updated: A sub-class of a Fedora message that defines a message schema for mes-
sages published by pagure when a PR is updated. (history)

40 Chapter 7. Available Schemas

https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.initial_comment.edited
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.new
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.rebased
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.reopened
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.tag.added
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.tag.removed
https://apps.fedoraproject.org/datagrepper/raw?topic=org.fedoraproject.prod.pagure.pull-request.updated

CHAPTER

EIGHT

TESTING

Once you’ve written code to publish or consume messages, you’ll probably want to test it. The fedora_messaging.
testing module has utilities for common test patterns.

If you find yourself implementing a pattern over and over in your test code, consider contributing it here!

fedora_messaging.testing.mock_sends(*expected_messages)
Assert a block of code results in the provided messages being sent without actually sending them.

This is intended for unit tests. The call to publish is mocked out and messages are captured and checked at the
end of the with.

For example:

>>> from fedora_messaging import api, testing
>>> def publishes():
... api.publish(api.Message(body={"Hello": "world"}))
...
>>> with testing.mock_sends(api.Message, api.Message(body={"Hello": "world"})):
... publishes()
... publishes()
...
>>> with testing.mock_sends(api.Message(body={"Goodbye": "everybody"})):
... publishes()
...
AssertionError

Parameters
*expected_messages – The messages you expect to be sent. These can be classes instances
of classes derived from fedora_messaging.message.Message. If the class is provided, the
message is checked to make sure it is an instance of that class and that it passes schema validation.
If an instance is provided, it is checked for equality with the sent message.

Raises
AssertionError – If the messages published don’t match the messages asserted.

41

https://docs.python.org/3/library/exceptions.html#AssertionError

Fedora Messaging, Release 3.5.0

42 Chapter 8. Testing

CHAPTER

NINE

COMMAND LINE INTERFACE MANUALS

9.1 fedora-messaging

9.1.1 Synopsis

fedora-messaging COMMAND [OPTIONS] [ARGS]. . .

9.1.2 Description

fedora-messaging can be used to work with AMQP message brokers using the fedora-messaging library to start
message consumers.

9.1.3 Options

--help

Show help text and exit.

--conf

Path to a valid configuration file to use in place of the configuration in /etc/fedora-messaging/
config.toml.

9.1.4 Commands

There are three sub-commands, consume, publish and record, described in detail in their own sections below.

fedora-messaging consume [OPTIONS]

Starts a consumer process with a user-provided callback function to execute when a message arrives.

fedora-messaging publish [OPTIONS] FILE

Loads serialized messages from a file and publishes them to the specified exchange.

fedora-messaging record [OPTIONS] FILE

Records messages arrived from AMQP queue and saves them to file with specified name.

43

Fedora Messaging, Release 3.5.0

consume

All options below correspond to settings in the configuration file. However, not all available configuration keys can
be overridden with options, so it is recommended that for complex setups and production environments you use the
configuration file and no options on the command line.

--app-name

The name of the application, used by the AMQP client to identify itself to the broker. This is purely for
administrator convenience to determine what applications are connected and own particular resources.

This option is equivalent to the app setting in the client_properties section of the configuration file.

--callback

The Python path to the callable object to execute when a message arrives. The Python path should be in
the format module.path:object_in_module and should point to either a function or a class. Consult
the API documentation for the interface required for these objects.

This option is equivalent to the callback setting in the configuration file.

--routing-key

The AMQP routing key to use with the queue. This controls what messages are delivered to the consumer.
Can be specified multiple times; any message that matches at least one will be placed in the message queue.

Setting this option is equivalent to setting the routing_keys setting in all bindings entries in the con-
figuration file.

--queue-name

The name of the message queue in AMQP. Can contain ASCII letters, digits, hyphen, underscore, period,
or colon. If one is not specified, a unique name will be created for you.

Setting this option is equivalent to setting the queue setting in all bindings entries and creating a queue.
<queue-name> section in the configuration file.

--exchange

The name of the exchange to bind the queue to. Can contain ASCII letters, digits, hyphen, underscore,
period, or colon.

Setting this option is equivalent to setting the exchange setting in all bindings entries in the configuration
file.

publish

The publish command expects the message or messages provided in FILE to be JSON objects with each message
separated by a newline character. The JSON object is described by the following JSON schema:

{
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Schema for the JSON object used to represent messages in a file",
"type": "object",
"properties": {

"topic": {"type": "string", "description": "The message topic"},
"headers": {

"type": "object",
"properties": Message.headers_schema["properties"],
"description": "The message headers",

(continues on next page)

44 Chapter 9. Command Line Interface Manuals

Fedora Messaging, Release 3.5.0

(continued from previous page)

},
"id": {"type": "string", "description": "The message's UUID."},
"body": {"type": "object", "description": "The message body."},
"queue": {

"type": "string",
"description": "The queue the message arrived on, if any.",

},
},
"required": ["topic", "headers", "id", "body", "queue"],

}

They can be produced from Message objects by the fedora_messaging.api.dumps() API. stdin can be used
instead of a file by providing - as an argument:

$ fedora-messaging publish -

Options

--exchange

The name of the exchange to publish to. Can contain ASCII letters, digits, hyphen, underscore, period, or
colon.

record

--limit

The maximum number of messages to record.

--app-name

The name of the application, used by the AMQP client to identify itself to the broker. This is purely for
administrator convenience to determine what applications are connected and own particular resources. If
not specified, the default is recorder.

This option is equivalent to the app setting in the client_properties section of the configuration file.

--routing-key

The AMQP routing key to use with the queue. This controls what messages are delivered to the consumer.
Can be specified multiple times; any message that matches at least one will be placed in the message queue.

Setting this option is equivalent to setting the routing_keys setting in all bindings entries in the con-
figuration file.

--queue-name

The name of the message queue in AMQP. Can contain ASCII letters, digits, hyphen, underscore, period,
or colon. If one is not specified, a unique name will be created for you.

Setting this option is equivalent to setting the queue setting in all bindings entries and creating a queue.
<queue-name> section in the configuration file.

--exchange

The name of the exchange to bind the queue to. Can contain ASCII letters, digits, hyphen, underscore,
period, or colon.

9.1. fedora-messaging 45

Fedora Messaging, Release 3.5.0

Setting this option is equivalent to setting the exchange setting in all bindings entries in the configuration
file.

9.1.5 Exit codes

consume

The consume command can exit for a number of reasons:

0

The consumer intentionally halted by raising a HaltConsumer exception.

2

The argument or option provided is invalid.

10

The consumer was unable to declare an exchange, queue, or binding in the message broker. This occurs
with the user does not have permission on the broker to create the object or the object already exists, but
does not have the attributes the consumer expects (e.g. the consumer expects it to be a durable queue, but
it is transient).

11

The consumer encounters an unexpected error while registering the consumer with the broker. This is a
bug in fedora-messaging and should be reported.

12

The consumer is canceled by the message broker. The consumer is typically canceled when the queue
it is subscribed to is deleted on the broker, but other exceptional cases could result in this. The broker
administrators should be consulted in this case.

13

An unexpected general exception is raised by your consumer callback.

Additionally, consumer callbacks can cause the command to exit with a custom exit code. Consult the consumer’s
documentation to see what error codes it uses.

publish

0

The messages were all successfully published.

1

A general, unexpected exception occurred and the message was not successfully published.

121

The message broker rejected the message, likely due to resource constraints.

111

A connection to the broker could not be established.

46 Chapter 9. Command Line Interface Manuals

Fedora Messaging, Release 3.5.0

9.1.6 Signals

consume

The consume command handles the SIGTERM and SIGINT signals by allowing any consumers which are currently
processing a message to finish, acknowledging the message to the message broker, and then shutting down. Repeated
SIGTERM or SIGINT signals are ignored. To halt immediately, send the SIGKILL signal; messages that are partially
processed will be re-delivered when the consumer restarts.

9.1.7 Systemd service

The consume subcommand can be started as a system service, and Fedora Messaging provides a dynamic systemd
service file.

First, create a valid Fedora Messaging configuration file in /etc/fedora-messaging/foo.toml, with the callback
parameter pointing to your consuming function or class. Remember that you can use the consumer_config section
for your own configuration.

Enable and start the service in systemd with the following commands:

systemctl enable fm-consumer@foo.service
systemctl start fm-consumer@foo.service

The service name after the @ and before the .service must match your filename in /etc/fedora-messaging (with-
out the .toml suffix).

9.1.8 Help

If you find bugs in fedora-messaging or its man page, please file a bug report or a pull request:

https://github.com/fedora-infra/fedora-messaging

Or, if you prefer, send an email to infrastructure@fedoraproject.org with bug reports or patches.

fedora-messaging’s documentation is available online:

https://fedora-messaging.readthedocs.io/

9.1. fedora-messaging 47

mailto:infrastructure@fedoraproject.org

Fedora Messaging, Release 3.5.0

48 Chapter 9. Command Line Interface Manuals

CHAPTER

TEN

INSTALLATION

10.1 Installing the library

Create a Python virtual environment:

mkdir fedora-messaging-tutorial
cd fedora-messaging-tutorial
mkvirtualenv -p python3 -a `pwd` fedora-messaging-tutorial
workon fedora-messaging-tutorial

Install the library and its dependencies:

pip install fedora-messaging
Alternatively, install it directly from the git repository
git clone https://github.com/fedora-infra/fedora-messaging.git
cd fedora-messaging
pip install -e .

Make sure it is available and working:

fedora-messaging --help

10.2 Setting up RabbitMQ

Install RabbitMQ and start it:

dnf install rabbitmq-server
systemctl start rabbitmq-server

Enable RabbitMQ web admin interface:

rabbitmq-plugins enable rabbitmq_management

RabbitMQ has a web admin interface that you can access at: http://localhost:15672/. The username is guest and
the password is guest. This interface lets you change the configuration, send messages and read the messages in the
queues. Keep it open in a browser tab, we’ll need it later.

If your project uses containers, consult the RabbitMQ documentation about containers.

49

http://localhost:15672/
https://www.rabbitmq.com/download.html#docker

Fedora Messaging, Release 3.5.0

10.3 Configuration

An example of the library configuration file is provided in the config.toml.example file. Copy that file to /etc/
fedora-messaging/config.toml to make it available system-wide. Alternatively, you can copy it to config.toml
anywhere and set the FEDORA_MESSAGING_CONF environement variable to that file’s path.

Refer to the documentation for a complete description of the configuration options.

Comment out the callback and bindings options, and all the [exchanges.custom_exchange] and [queues.
my_queue] sections.

In the [client_properties] section, change the app value to Fedora Messaging tutorial.

50 Chapter 10. Installation

http://fedora-messaging.readthedocs.io/en/latest/configuration.html

CHAPTER

ELEVEN

USING THE API

We will be creating some scripts to publish and subscribe to the bus. First, create a directory to hold the code you will
write, than change to this directory.

11.1 Publishing

To publish on the Fedora Messaging bus, you just need to use the fedora_messaging.api.publish() function,
passing it an instance of the fedora_messaging.message.Message class that represents the message you want to
publish.

A message has a schema, a topic, a severity, a body, and a set of headers. We’ll cover the schema later in this tutorial.
The headers and the body are Python dictionaries with JSON-serializable values. The topic is a string containing
elements separated by dots that will be used to route messages.

Create a publishing script called publish.py:

#!/usr/bin/env python3

from fedora_messaging.api import publish, Message
from fedora_messaging.config import conf

conf.setup_logging()
message = Message(

topic="tutorial.topic",
body={"reason": "test message"}

)
publish(message)

Of course, you can make a smarter script that will use command-line arguments, this is left as an exercice to the reader.
Now run it:

chmod +x publish.py
./publish.py

The script should complete without error. If you go to RabbitMQ’s web interface, you’ll see that a message has been
sent to the amq.topic exchange. However, since noone is listening to this topic, the message has been discarded. Now,
we’ll setup listeners.

51

Fedora Messaging, Release 3.5.0

11.2 Listening

Clients listen on the Fedora Messaging bus by subscribing to a topic or a topic pattern using the hash (#) symbol as a
wildcard. For exemple you can subscribe to bodhi.updates.kernel but also to bodhi.updates.#. In the former
case you’ll get kernel updates, in the latter case you’ll get all Bodhi updates.

After subscription, all messages with a topic matching the pattern will be routed to a queue on the server, and clients
will consume messages from this queue. In the AMQP language, this is called binding a queue to an exchange, and the
topic pattern is called the routing_key.

In the configuration file, the bindings section controls which queues will be subscribed to which topic patterns. Edit
the file so the option looks like this:

[[bindings]]
queue = "tutorial"
exchange = "amq.topic"
routing_keys = ["tutorial.#"]

This means that the queue named tutorial will be created and subcribed to the amq.topic exchange using the
tutorial.# pattern. All messages with a topic starting with tutorial. will end up in this queue, and no other.

Now configure this new queue’s properties in the file using a snippet that looks like this:

[queues.tutorial]
durable = true
auto_delete = false
exclusive = false
arguments = {}

This means that messages in this queue will survive a client’s disconnection and a server restart, and that multiple client
can connect to it simultaneously to consume messages in a round-robin fashion.

11.2.1 Python script

Now create the following script, called consume.py:

#!/usr/bin/env python3

from fedora_messaging.api import consume
from fedora_messaging.config import conf

conf.setup_logging()

def print_message(message):
print(message)

if __name__ == "__main__":
conf.setup_logging()
consume(print_message)

The script should run and wait for new messages. Now run the publish.py script again in another terminal (remember
to activate the virtualenv with workon fedora-messaging-tutorial). You should see the message being printed
where the consume.py script is running.

52 Chapter 11. Using the API

Fedora Messaging, Release 3.5.0

11.2.2 Python callback

You can also just define the callback function and use the fedora-messaging command-line tool to do the listening:

fedora-messaging consume --callback="consume:print_message"

This should behave identically.

11.2.3 Round robin

When multiple programs are simulaneously consuming from the same queue, they get the messages in a round-robin
fashion. Try running another instance of the consume.py script, and run the publish.py script multiple times. You’ll
see that consume.py instances get a message one after the other.

11.2. Listening 53

Fedora Messaging, Release 3.5.0

54 Chapter 11. Using the API

CHAPTER

TWELVE

JSON SCHEMAS

Message bodies are JSON objects, that adhere to a schema. Message schemas live in their own Python package, so
they can be installed on the producer and on the consumer.

In Fedora Messaging, we follow the JSON Schema standard, and use the jsonschema library.

12.1 Creating the schema package

Copy the docs/sample_schema_package/ directory from the fedora-messaging git clone to your app directory.

Edit the setup.py file to change the package metadata. Rename the mailman_messages directory to something
relevant to your app, like yourapp_messages. This is the naming convention. Edit the README file too.

If you prefer CookieCutter, there is a template repository that you can use with the command:

cookiecutter gh:fedora-infra/cookiecutter-message-schemas

12.2 Writing the schema

JSON objects are converted to dictionaries in Python. Writing a JSON schema with the jsonschema library means
writing a Python dictionary that will describe the message’s JSON object body. Read up on the jsonschema library
documentation if you have questions about the format.

Open the messages.py file, it contains an example schema for Mailman-originating messages on the bus. The schema
is a Python class containing an important dictionary attribute: body_schema. This is where the JSON schema lives.

For clarity, edit the setup.py file and in the entry points list change the mailman.messageV1 name to something more
relevant to your app, like yourapp.my_messageV1. The entry point name needs to be unique to your application, so
it’s best to prefix it with your package or application name.

12.2.1 Schema format

This dictionary describes the possible keys and types in the JSON object being validated, using the following reserved
keys:

• id (or $id): an URI identifing this schema. Change the last part of the example URL to use your app’s name.

• $schema: an URI describing the validator to use, you can leave that one as it is. It is only present at the root of
the dictionary.

• description: a fulltext description of the key.

55

http://json-schema.org/
https://python-jsonschema.readthedocs.io/
https://cookiecutter.readthedocs.io
https://github.com/fedora-infra/cookiecutter-message-schemas
https://python-jsonschema.readthedocs.io/
https://python-jsonschema.readthedocs.io/

Fedora Messaging, Release 3.5.0

• type: the value type for this key. You can choose among: - null: equivalent to None - boolean: equivalent to
True or False - object: a Python dictionary - array: a Python list - number: an int or a float - string: a
Python string

• properties: a dictionary describing the possible keys contained in the JSON object, where keys are possible
key names, and values are JSON schemas. Those schemas can also have properties keys to describe all the
possible nested keys.

• required: a list of keys that must be present in the JSON object.

• format: a format validation type. You can choose among: - hostname - ipv4 - ipv6 - email - uri (requires the
rfc3987 package) - date - time - date-time (requires the strict-rfc3339 package) - regex - color (requires the
webcolors package)

For information on creating JSON schemas to validate your data, there is a good introduction to JSON Schema funda-
mentals underway at Understanding JSON Schema.

12.2.2 Example

Now edit the body_schema key to use the following schema:

{
'id': 'http://fedoraproject.org/message-schema/fedora-messaging-tutorial#',
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Schema for the Fedora Messaging tutorial',
'type': 'object',
'properties': {

'package': {
'type': 'object',
'properties': {

'name': {
'type': 'string',
'description': 'The name of the package',

},
'version': {'type': 'string'},

}
'required': ['name'],

},
'owner': {

'description': 'The owner of the package',
'type': 'string',

},
},
'required': ['package', 'owner'],

}

56 Chapter 12. JSON schemas

https://spacetelescope.github.io/understanding-json-schema/

Fedora Messaging, Release 3.5.0

12.2.3 Human readable representation

The schema class also contains a few methods to extract relevant information from the message, or to create a human-
readable representation.

Change the __str__() method to use the expected items from the message body. For example:

return '{owner} did something to the {package} package'.format(
owner=self.body['owner'], package=self.body['package']['name'])

Also edit the summary property to return something relevant.

12.2.4 Severity

Messages can also have a severity level. This is used by consumers to determine the importance of a message to an end
user. The possibly severity levels are defined in the Message Severity API documentation.

You should set a reasonable default for your messages.

12.3 Testing it

JSON schemas can also be unit-tested. Check out the tests/test_messages.py file and write the unit tests that are
appropriate for the message schema and the methods you just wrote. Use the example tests for inspiration.

12.4 Using it

To use your new JSON schema, its Python distribution must be available on the system. Run python setup.py
develop in the schema directory to install it.

Now you can use the yourapp_messages.messages.Message class (or however you named the package) to construct
your message instances and call fedora_messaging.api.publish on them. Edit the publish.py script to read:

#!/usr/bin/env python3

from fedora_messaging.api import publish
from fedora_messaging.config import conf
from yourapp_messages.messages import Message

conf.setup_logging()
message = Message(

topic="tutorial.topic",
body={

"owner": "fedorauser",
"package": {

"name": "foobar",
"version": "1.0",

}
}

)
publish(message)

12.3. Testing it 57

Fedora Messaging, Release 3.5.0

Start a consumer, and send the message. Try to comment out the “owner” key and see what happens when you try to
send a message that is not valid according to the schema.

12.5 Updating it

Message formats can change over time, and the schema must change to reflect that. When that happens, you need to
copy the old class to a new class in the schemas package, make the changes you need to do, and import the new one
in your publisher. You must also add a new entry in the entry_points argument in the schema package’s setup.py
file. The name of the entry point is currently unused, only the class path matters.

However, be warned that messages published with the new class may be dropped by the receivers if they don’t have the
new schema available locally. Therefore, you should publish the schema package with the new schema, update it on all
the receivers, restart them, and then start using the new version in the publishers.

You should keep the old schema versions in the schemas package for a reasonable amount of time, long enough to
make sure all receivers are up-to-date. To avoid clutter, we recommend you use a separate module per schema version
(yourapp_messages.v1:Message, yourapp_messages.v2:Message, etc)

Now create a new version and use it in the publish.py script. Send a message before restarting the consume.py
script to see what happens when a message with an unknown schema is received. Now restart the consume.py script
and re-send the message.

58 Chapter 12. JSON schemas

CHAPTER

THIRTEEN

HANDLING EXCEPTIONS

All exceptions are located in the fedora_messaging.exceptions module.

13.1 When publishing

When calling fedora_messaging.api.publish(), the following exceptions can be raised:

• ValidationError: raised if the message fails validation with its JSON schema. This only depends on the
message you are trying to send, the AMQP server is not involved.

• PublishReturned: raised if the broker rejects the message.

• PublishForbidden: raised if the broker rejects the message because of permissions issues.

• ConnectionException: raised if a connection error occurred before the publish confirmation arrived.

The ValidationError exception means you should fix either the schema (and maybe make a new version) or the
message. No need to catch it, this should crash your app during development and testing.

Your app may handle the other two exceptions in whichever way is relevant. It should involve logging, and sending
again or discarding may be valid options.

You already noticed the ValidationError being raised when you tried sending an invalid message in the previous
chapter.

13.2 When consuming

Invalid messages according to the JSON schema are automatically rejected by the client.

The callback function can raise the following exceptions:

• Nack: raise this to return the message to the queue

• Drop: raise this to drop the message

• HaltConsumer: raise this to shutdown the consumer and return the message to the queue.

Any other exception will bubble up in the consumer, shut it down, and return pending messages to the queue. Your app
will have to handle the exception.

Modify the callback function to raise those exceptions and see what happens.

When returning Nack systematically, the consumer will just loop on that one message, as it is put back in the queue
and delivered again forever.

59

Fedora Messaging, Release 3.5.0

Notice how raising HaltConsumer or another exception stops the consumer, but does not consume the message: it will
be re-delivered on the next startup.

60 Chapter 13. Handling exceptions

CHAPTER

FOURTEEN

CONVERTING A FEDMSG APPLICATION

14.1 Converting publishers

14.1.1 Converting a Flask app

Let’s use the elections app as an example. Clone the code using the following command:

git clone https://pagure.io/elections.git

And change to this directory.

In the elections app, all calls to publish messages on fedmsg are going through the fedora_elections.
fedmsgshim.publish wrapper function. We can thus modify this function to make it call Fedora Messaging instead
of fedmsg.

JSON schema

First, you will need a Message schema. To write this schema you must know what kind of messages are sent on the
bus. A git grep command will reveal that all calls are made from the admin.py file. Open that file and examine
those calls.

In parallel, copy the docs/sample_schema_package/ directory from the fedora-messaging git clone to your app
directory. Rename it to elections-messages. Edit the setup.py file like you did before, to change the package meta-
data (including the entry point). Use fedora_elections_messages for the name. Rename the mailman_messages
directory to fedora_elections_messages and adapt the setup.py metadata.

Edit the messages.py file and write the basic structure for the elections message schema. According to the different
calls in admin.py, it could be something like:

{
'id': 'http://fedoraproject.org/message-schema/elections#',
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Schema for Fedora Elections',
'type': 'object',
'properties': {

'agent': {'type': 'string'},
'election': {'type': 'object'},
'candidate': {'type': 'object'},

},
'required': ['agent', 'election'],

}

61

https://pagure.io/elections/

Fedora Messaging, Release 3.5.0

This could be sufficient, but it would be best to list what properties are available in the election and candidate keys.
Unfortunately, those are just JSON dumps of the database model, so you’ll have to look further to know the structure.

Examining the to_json() methods in models.py shows which keys are dumped to JSON. The schema could be
written as:

{
'id': 'http://fedoraproject.org/message-schema/elections#',
'$schema': 'http://json-schema.org/draft-04/schema#',
'description': 'Schema for Fedora Elections',
'type': 'object',
'properties': {

'agent': {'type': 'string'},
'election': {

'type': 'object',
'properties': {

'shortdesc': {'type': 'string'},
'alias': {'type': 'string'},
'description': {'type': 'string'},
'url': {'type': 'string', 'format': 'uri'},
'start_date': {'type': 'string'},
'end_date': {'type': 'string'},
'embargoed': {'type': 'number'},
'voting_type': {'type': 'string'},

},
'required': [

'shortdesc', 'alias', 'description', 'url',
'start_date', 'end_date', 'embargoed', 'voting_type',

],
},
'candidate': {

'type': 'object',
'properties': {

'name': {'type': 'string'},
'url': {'type': 'string', 'format': 'uri'},

},
'required': ['name', 'url'],

},
},
'required': ['agent', 'election'],

}

Use this schema and adapt the __str__() method and the summary property.

Since the schema is distributed in a separate python package, it must be added to the election app’s dependencies in
requirements.txt.

62 Chapter 14. Converting a fedmsg application

Fedora Messaging, Release 3.5.0

Wrapper function

Now you can import this class in fedora_elections/fedmsgshim.py and use it to encapsulate the messages. The
wrapper could look like:

import logging

from fedora_elections_messages.schema import Message
from fedora_messaging.api import publish as fm_publish
from fedora_messaging.exceptions import PublishReturned, PublishForbidden,␣
→˓ConnectionException

LOGGER = logging.getLogger(__name__)

def publish(topic, msg):
try:

fm_publish(Message(
topic="fedora.elections." + topic,
body=msg,

))
except (PublishReturned, PublishForbidden) as e:

LOGGER.warning(
"Fedora Messaging broker rejected message %s: %s",
msg.id, e

)
except ConnectionException as e:

LOGGER.warning("Error sending the message %s: %s", msg.id, e)

With this you’ll get a couple of nice features over the previous state of things:

• the message format is validated, so it’s your responsability to update the schema when you decide to change the
format, and not the receiver’s responsability to handle any database schema changes you may make that may
bleed into the message dictionary. And you’ll know during development if you break compatibility.

• you may handle messaging errors in anyway you deem relevant. Here we’re just logging them but you could
choose to re-send the messages, store them for further analysis, etc.

• when there are no exceptions, you know that the message has reached the broker and has been distributed.

Testing

Let’s start the election app and make sure messages are properly sent on the bus. First, we’ll create a virtualenv, and
install election and fedora-messaging with the following commands:

virtualenv venv
source ./venv/bin/activate
pushd elections-message-schemas
python setup.py develop
popd
pip install -r requirements.txt
python setup.py develop

Make sure the Fedora Messaging configuration file is correct in /etc/fedora-messaging/config.toml. We will
add a queue binding to route messages with the fedora.elections topic to the tutorial queue. Add this entry in
the bindings list:

14.1. Converting publishers 63

Fedora Messaging, Release 3.5.0

[[bindings]]
queue = "tutorial"
exchange = "amq.topic"
routing_keys = ["fedora.elections.#"]

You could also add "fedora.elections.#" to the "routing_keys" value in the existing entry.

Now make sure that RabbitMQ is still running, and run the consume.py script we used before. Make sure it is not
systematically raising exceptions in the callback function (as we did before).

Now we’ll run the election app, but first we need to create a configuration file. Create a file called config.py with the
following content:

FEDORA_ELECTIONS_ADMIN_GROUP = ""

This will allow any Fedora account to be an admin on your instance, which is good enough for this tutorial. Now start
the app with:

python createdb.py
python runserver.py -c config.py

Open your browser to http://localhost:5000/admin/new. Login with FAS, then create an election. Check the terminal
where the consume.py script is running. You should see the message that the elections app has sent on election
creation. Edit the election, and you should see the corresponding message in the terminal where consume.py is
running.

14.1.2 Converting a Pyramid app

Let’s use the github2fedmsg app as an example. It is a Pyramid webapp that registers a webhook with Github on
all subscribed projects, and then broadcasts actions (commits, pull-request, tickets) received on this webhook to the
message bus.

Clone the code using the following command:

git clone git@github.com:fedora-infra/github2fedmsg.git

And change to this directory.

JSON Schema

The only call to fedmsg is in github2fedmsg/views/webhooks.py. Since the app transmits the webhook payload
almost transparently to the message bus, the structure isn’t obvious, so it’s harder to define a schema. Fortunately, the
Github documentation has a comprehensive list of payload formats.

It would be to long to define precise JSON schemas for each event type, so we’ll just use the generic schema.

64 Chapter 14. Converting a fedmsg application

http://localhost:5000/admin/new
https://github.com/fedora-infra/github2fedmsg
https://developer.github.com/v3/activity/events/types/

Fedora Messaging, Release 3.5.0

Sending the messages

Now you can replace the current call to fedmsg with a call to fedora_messaging.api.publish. Add these lines in
the github2fedmsg.views.webhook module:

import logging
from fedora_messaging.api import Message, publish
from fedora_messaging.exceptions import PublishReturned, PublishForbidden,␣
→˓ConnectionException

LOGGER = logging.getLogger(__name__)

And replace the call to fedmsg.publish with:

try:
msg = Message(

topic="github." + event_type,
body=payload,

)
publish(msg)

except (PublishReturned, PublishForbidden) as e:
LOGGER.warning(

"Fedora Messaging broker rejected message %s: %s",
msg.id, e

)
except ConnectionException as e:

LOGGER.warning("Error sending message %s: %s", msg.id, e)

Testing it

Make sure the Fedora Messaging configuration file is correct in /etc/fedora-messaging/config.toml. We will
add a queue binding to route messages with the github topic to the tutorial queue. Add this entry in the bindings
list:

[[bindings]]
queue = "tutorial"
exchange = "amq.topic"
routing_keys = ["github.#"]

You could also add "github.#" to the "routing_keys" value in the existing entry.

Now make sure that RabbitMQ is still running, and run the consume.py script we used before. Make sure it is not
systematically raising exceptions in the callback function (as we did before).

To setup the github2fedmsg application, follow the README.rst file:

virtualenv venv
source ./venv/bin/activate
python setup.py develop
pip install waitress

Go off and register your development application with GitHub. Save the oauth tokens and add the secret one to a new
file you create called secret.ini. Use the example secret.ini.example file.

Create the database and start the application:

14.1. Converting publishers 65

https://github.com/settings/applications

Fedora Messaging, Release 3.5.0

initialize_github2fedmsg_db development.ini
pserve development.ini --reload

14.2 Converting consumers

Let’s use the-new-hotness app as an example. Clone the code and switch to state before conversion by using the
following commands:

git clone https://github.com/fedora-infra/the-new-hotness.git
git checkout 0.10.1

And change to this directory.

In the-new-hotness app, all calls to consume messages on fedmsg are going through the hotness.consumers.
BugzillaTicketFiler.consumemethod. We can thus modify this function to make it use Fedora Messaging instead
of fedmsg.

14.2.1 Configuration

First we need to convert configuration file from fedmsg format to Fedora Messaging. Unlike fedmsg, fedora-messaging
does not allow for arbitrary configuration keys.

The converted configuration config.toml could look like following:

Define the callback function
This will allow you to call only ``fedora-messaging consume`` without explicitly
specifying the callback every time you starting ``the-new-hotness``.
callback = "hotness.consumers:BugzillaTicketFiler"

In case of the-new-hotness we are listening to three topics, so we
create a new binding for them
[[bindings]]
queue = "the-new-hotness"
exchange = "amq.topic"
routing_keys = [

"org.release-monitoring.prod.anitya.project.version.update",
"org.release-monitoring.prod.anitya.project.map.new",
"org.fedoraproject.prod.buildsys.task.state.change",

]

Define a queue
[queues.the-new-hotness]
durable = true
auto_delete = false
exclusive = false
arguments = {}

Any application specific configuration should go to consumer_config section Configuration.

66 Chapter 14. Converting a fedmsg application

https://github.com/fedora-infra/the-new-hotness

Fedora Messaging, Release 3.5.0

14.2.2 Init method

The BugzillaTicketFiler class in consumers.py is doing all the consuming work. First we need to change the
inheritance of this class.

Then we need to modify the __init__ method and use the fedora_messaging.config.conf dictionary instead of
the fedmsg configuration. The __init__ method could look something like this after the change:

from fedora_messaging.config import conf

class BugzillaTicketFiler:
"""
A fedora-messaging consumer that is the heart of the-new-hotness.

This consumer subscribes to the following topics:

* 'org.fedoraproject.prod.buildsys.task.state.change'
handled by :method:`BugzillaTicketFiler.handle_buildsys_scratch`

* 'org.release-monitoring.prod.anitya.project.version.update'
handled by :method:`BugzillaTicketFiler.handle_anitya_version_update`

* 'org.release-monitoring.prod.anitya.project.map.new'
handled by :method:`BugzillaTicketFiler.handle_anitya_map_new`

"""

def __init__(self):

This is just convenient.
self.config = conf["consumer_config"]

...

Note: Unrelated code was deleted from the example.

14.2.3 Wrapper function

The next step is to change consumemethod to __call__method. This is pretty straightforward. After this modification
__call__ method should look like this:

def __call__(self, msg):
"""
Called when a message is received from queue.

Params:
msg (fedora_messaging.message.Message) The message we received

from the queue.
"""
topic, body, msg_id = msg.topic, msg.body, msg.id
_log.debug("Received %r" % msg_id)

(continues on next page)

14.2. Converting consumers 67

Fedora Messaging, Release 3.5.0

(continued from previous page)

if topic.endswith("anitya.project.version.update"):
self.handle_anitya_version_update(msg)

elif topic.endswith("anitya.project.map.new"):
self.handle_anitya_map_new(msg)

elif topic.endswith("buildsys.task.state.change"):
self.handle_buildsys_scratch(msg)

else:
_log.debug("Dropping %r %r" % (topic, body))
pass

In this case we are working with the message using the standard fedora_messaging.message.Message methods.
It is always better to use schema specific methods for any topic you are receiving.

14.2.4 Testing

To prepare the-new-hotness for testing checkout the requirements.txt file and devel folder from master
branch:

git checkout master devel requirements.txt

This will convert development environment to the state when it’s ready for Fedora Messaging. In a configured devel-
opment environment we can easily test our conversion.

Start app by using alias hotstart, this will start the systemd service with following command fedora-messaging
consume. The systemd unit could be find in .config/systemd/user/.

For testing you can use any message from datagrepper. Just add /raw?category=<application
name>&delta=259200 to URL and pick any message. For example category for Anitya is anitya.

To send the message you need simple publisher. One is created for the new hotness in devel/
fedora_messaging_replay.py. To send the message you can use any message id found in datagrepper:

python3 devel/fedora_messaging_replay.py <msg_id>

And now you can check if the message was received using hotlog alias, which shows the journal log for
the-new-hotness.

68 Chapter 14. Converting a fedmsg application

https://the-new-hotness.readthedocs.io/en/latest/dev-guide.html#development-environment
https://the-new-hotness.readthedocs.io/en/latest/dev-guide.html#development-environment
https://apps.fedoraproject.org/datagrepper
https://apps.fedoraproject.org/datagrepper

CHAPTER

FIFTEEN

DEVELOPER INTERFACE

This documentation covers the public interfaces fedora_messaging provides.

Note: Documented interfaces follow Semantic Versioning 2.0.0. Any interface not documented here may change at
any time without warning.

API Table of Contents

• Publishing

– publish

• Subscribing

– twisted_consume

– Consumer

– consume

• Signals

– pre_publish_signal

– publish_signal

– publish_failed_signal

• Message Schemas

– Message

– Message Severity

∗ DEBUG

∗ INFO

∗ WARNING

∗ ERROR

∗ SEVERITIES

– dumps

– loads

– SERIALIZED_MESSAGE_SCHEMA

69

http://semver.org/

Fedora Messaging, Release 3.5.0

• Utilities

– libravatar_url

• Exceptions

• Configuration

– conf

– DEFAULTS

15.1 Publishing

15.1.1 publish

fedora_messaging.api.publish(message, exchange=None, timeout=30)
Publish a message to an exchange.

This is a synchronous call, meaning that when this function returns, an acknowledgment has been received from
the message broker and you can be certain the message was published successfully.

There are some cases where an error occurs despite your message being successfully published. For example,
if a network partition occurs after the message is received by the broker. Therefore, you may publish duplicate
messages. For complete details, see the Publishing documentation.

>>> from fedora_messaging import api
>>> message = api.Message(body={'Hello': 'world'}, topic='Hi')
>>> api.publish(message)

If an attempt to publish fails because the broker rejects the message, it is not retried. Connection attempts to
the broker can be configured using the “connection_attempts” and “retry_delay” options in the broker URL. See
pika.connection.URLParameters for details.

Parameters

• message (message.Message) – The message to publish.

• exchange (str) – The name of the AMQP exchange to publish to; defaults to pub-
lish_exchange

• timeout (int) – The maximum time in seconds to wait before giving up attempting to
publish the message. If the timeout is reached, a PublishTimeout exception is raised.

Raises

• fedora_messaging.exceptions.PublishReturned – Raised if the broker rejects the
message.

• fedora_messaging.exceptions.PublishTimeout – Raised if the broker could not be
contacted in the given timeout time.

• fedora_messaging.exceptions.PublishForbidden – Raised if the broker rejects the
message because of permission issues.

• fedora_messaging.exceptions.ValidationError – Raised if the message fails vali-
dation with its JSON schema. This only depends on the message you are trying to send, the
AMQP server is not involved.

70 Chapter 15. Developer Interface

https://pika.readthedocs.io/en/latest/modules/parameters.html#pika.connection.URLParameters
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int

Fedora Messaging, Release 3.5.0

15.2 Subscribing

15.2.1 twisted_consume

fedora_messaging.api.twisted_consume(callback, bindings=None, queues=None)
Start a consumer using the provided callback and run it using the Twisted event loop (reactor).

Note: Callbacks run in a Twisted-managed thread pool using the twisted.internet.threads.
deferToThread() API to avoid them blocking the event loop. If you wish to use Twisted APIs in your call-
back you must use the twisted.internet.threads.blockingCallFromThread() or twisted.internet.
interfaces.IReactorFromThreads APIs.

This API expects the caller to start the reactor.

Parameters

• callback (callable) – A callable object that accepts one positional argument, a Message
or a class object that implements the __call__method. The class will be instantiated before
use.

• bindings (dict or list of dict) – Bindings to declare before consuming. This
should be the same format as the bindings configuration.

• queues (dict) – The queue to declare and consume from. Each key in this dictionary
should be a queue name to declare, and each value should be a dictionary with the “durable”,
“auto_delete”, “exclusive”, and “arguments” keys.

Raises
ValueError – If the callback, bindings, or queues are invalid.

Returns
A deferred that fires with the list of one or more Consumer objects. Each consumer object
has a Consumer.result instance variable that is a Deferred that fires or errors when the con-
sumer halts. Note that this API is meant to survive network problems, so consuming will con-
tinue until Consumer.cancel() is called or a fatal server error occurs. The deferred returned
by this function may error back with a fedora_messaging.exceptions.BadDeclaration
if queues or bindings cannot be declared on the broker, a fedora_messaging.exceptions.
PermissionException if the user doesn’t have access to the queue, or fedora_messaging.
exceptions.ConnectionException if the TLS or AMQP handshake fails.

Return type
twisted.internet.defer.Deferred

15.2.2 Consumer

class fedora_messaging.api.Consumer(queue=None, callback=None)
Represents a Twisted AMQP consumer and is returned from the call to fedora_messaging.api.
twisted_consume().

queue

The AMQP queue this consumer is subscribed to.

Type
str

15.2. Subscribing 71

https://docs.twisted.org/en/stable/api/twisted.internet.threads.html#deferToThread
https://docs.twisted.org/en/stable/api/twisted.internet.threads.html#deferToThread
https://docs.twisted.org/en/stable/api/twisted.internet.threads.html#blockingCallFromThread
https://docs.twisted.org/en/stable/api/twisted.internet.interfaces.IReactorFromThreads.html
https://docs.twisted.org/en/stable/api/twisted.internet.interfaces.IReactorFromThreads.html
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.twisted.org/en/stable/api/twisted.internet.defer.Deferred.html
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

callback

The callback to run when a message arrives.

Type
callable

result

A deferred that runs the callbacks if the consumer exits gracefully after being canceled by a call to
Consumer.cancel() and errbacks if the consumer stops for any other reason. The reasons a consumer
could stop are: a fedora_messaging.exceptions.PermissionExecption if the consumer does not
have permissions to read from the queue it is subscribed to, a HaltConsumer is raised by the consumer
indicating it wishes to halt, an unexpected Exception is raised by the consumer, or if the consumer is
canceled by the server which happens if the queue is deleted by an administrator or if the node the queue
lives on fails.

Type
twisted.internet.defer.Deferred

cancel()

Cancel the consumer and clean up resources associated with it. Consumers that are canceled are allowed
to finish processing any messages before halting.

Returns
A deferred that fires when the consumer has finished processing any message it was in the
middle of and has been successfully canceled.

Return type
defer.Deferred

15.2.3 consume

fedora_messaging.api.consume(callback, bindings=None, queues=None)
Start a message consumer that executes the provided callback when messages are received.

This API is blocking and will not return until the process receives a signal from the operating system.

Warning: This API is runs the callback in the IO loop thread. This means if your callback could run for a
length of time near the heartbeat interval, which is likely on the order of 60 seconds, the broker will kill the
TCP connection and the message will be re-delivered on start-up.

For now, use the twisted_consume() API which runs the callback in a thread and continues to handle
AMQP events while the callback runs if you have a long-running callback.

The callback receives a single positional argument, the message:

>>> from fedora_messaging import api
>>> def my_callback(message):
... print(message)
>>> bindings = [{'exchange': 'amq.topic', 'queue': 'demo', 'routing_keys': ['#']}]
>>> queues = {
... "demo": {"durable": False, "auto_delete": True, "exclusive": True,
→˓"arguments": {}}
... }
>>> api.consume(my_callback, bindings=bindings, queues=queues)

72 Chapter 15. Developer Interface

https://docs.python.org/3/library/exceptions.html#Exception
https://docs.twisted.org/en/stable/api/twisted.internet.defer.Deferred.html

Fedora Messaging, Release 3.5.0

If the bindings and queue arguments are not provided, they will be loaded from the configuration.

For complete documentation on writing consumers, see the Consumers documentation.

Parameters

• callback (callable) – A callable object that accepts one positional argument, a Message
or a class object that implements the __call__method. The class will be instantiated before
use.

• bindings (dict or list of dict) – Bindings to declare before consuming. This
should be the same format as the bindings configuration.

• queues (dict) – The queue or queues to declare and consume from. This should be in the
same format as the queues configuration dictionary where each key is a queue name and each
value is a dictionary of settings for that queue.

Raises

• fedora_messaging.exceptions.HaltConsumer – If the consumer requests that it be
stopped.

• ValueError – If the consumer provides a callback that is not a class that implements
__call__ and is not a function, if the bindings argument is not a dict or list of dicts with
the proper keys, or if the queues argument isn’t a dict with the proper keys.

15.3 Signals

Signals sent by fedora_messaging APIs using blinker.base.Signal signals.

15.3.1 pre_publish_signal

fedora_messaging.api.pre_publish_signal = <blinker.base.NamedSignal object at
0x7f7c06908050; 'pre_publish'>

A signal triggered before the message is published. The signal handler should accept a single keyword argument,
message, which is the instance of the fedora_messaging.message.Message being sent. It is acceptable to
mutate the message, but the validate method will be called on it after this signal.

15.3.2 publish_signal

fedora_messaging.api.publish_signal = <blinker.base.NamedSignal object at 0x7f7c069ca300;
'publish_success'>

A signal triggered after a message is published successfully. The signal handler should accept a single keyword
argument, message, which is the instance of the fedora_messaging.message.Message that was sent.

15.3. Signals 73

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/exceptions.html#ValueError
https://blinker.readthedocs.io/en/stable/#blinker.base.Signal

Fedora Messaging, Release 3.5.0

15.3.3 publish_failed_signal

fedora_messaging.api.publish_failed_signal = <blinker.base.NamedSignal object at
0x7f7c06841760; 'publish_failed_signal'>

A signal triggered after a message fails to publish for some reason. The signal handler should accept two keyword
argument, message, which is the instance of the fedora_messaging.message.Message that failed to be sent,
and error, the exception that was raised.

15.4 Message Schemas

This module defines the base class of message objects and keeps a registry of known message implementations. This
registry is populated from Python entry points in the “fedora.messages” group.

To implement your own message schema, simply create a class that inherits the Message class, and add an entry point
in your Python package under the “fedora.messages” group. For example, an entry point for the Message schema
would be:

entry_points = {
'fedora.messages': [

'base.message=fedora_messaging.message:Message'
]

}

The entry point name must be unique to your application and is used to map messages to your message class, so it’s
best to prefix it with your application name (e.g. bodhi.new_update_messageV1). When publishing, the Fedora
Messaging library will add a header with the entry point name of the class used so the consumer can locate the correct
schema.

Since every client needs to have the message schema installed, you should define this class in a small Python package
of its own.

15.4.1 Message

class fedora_messaging.message.Message(body=None, headers=None, topic=None, properties=None,
severity=None)

Messages are simply JSON-encoded objects. This allows message authors to define a schema and implement
Python methods to abstract the raw message from the user. This allows the schema to change and evolve without
breaking the user-facing API.

There are a number of properties that are intended to be overridden by users. These fields are used to sort
messages for notifications or are used to create human-readable versions of the messages. Properties that are
intended for this purpose are noted in their attribute documentation below.

Parameters

• headers (dict) – A set of message headers. Consult the headers schema for expected keys
and values.

• body (dict) – The message body. Consult the body schema for expected keys and values.
This dictionary must be JSON-serializable by the default serializer.

• topic (str) – The message topic as a unicode string. If this is not provided, the default
topic for the class is used. See the attribute documentation below for details.

74 Chapter 15. Developer Interface

https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

• properties (pika.BasicProperties) – The AMQP properties. If this is not provided,
they will be generated. Most users should not need to provide this, but it can be useful in
testing scenarios.

• severity (int) – An integer that indicates the severity of the message. This is used to
determine what messages to notify end users about and should be DEBUG , INFO , WARNING ,
or ERROR . The default is INFO , and can be set as a class attribute or on an instance-by-instance
basis.

id

The message id as a unicode string. This attribute is automatically generated and set by the library and
users should only set it themselves in testing scenarios.

Type
str

topic

The message topic as a unicode string. The topic is used by message consumers to filter what messages
they receive. Topics should be a string of words separated by ‘.’ characters, with a length limit of 255
bytes. Because of this byte limit, it is best to avoid non-ASCII character. Topics should start general and
get more specific each word. For example: “bodhi.update.kernel” is a possible topic. “bodhi” identifies the
application, “update” identifies the message, and “kernel” identifies the package in the update. This can
be set at a class level or on a instance level. Dynamic, specific topics that allow for fine-grain filtering are
preferred.

Type
str

headers_schema

A JSON schema to be used with jsonschema.validate() to validate the message headers. For most
users, the default definition should suffice.

Type
dict

body_schema

A JSON schema to be used with jsonschema.validate() to validate the message body. The
body_schema is retrieved on a message instance so it is not required to be a class attribute, although this
is a convenient approach. Users are also free to write the JSON schema as a file and load the file from the
filesystem or network if they prefer.

Type
dict

body

The message body as a Python dictionary. This is validated by the body schema before publishing and
before consuming.

Type
dict

severity

An integer that indicates the severity of the message. This is used to determine what messages to notify
end users about and should be DEBUG , INFO , WARNING , or ERROR . The default is INFO , and can be set as a
class attribute or on an instance-by-instance basis.

Type
int

15.4. Message Schemas 75

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
http://json-schema.org/
https://python-jsonschema.readthedocs.io/en/latest/api/#jsonschema.validate
https://docs.python.org/3/library/stdtypes.html#dict
http://json-schema.org/
https://python-jsonschema.readthedocs.io/en/latest/api/#jsonschema.validate
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/functions.html#int

Fedora Messaging, Release 3.5.0

queue

The name of the queue this message arrived through. This attribute is set automatically by the library and
users should never set it themselves.

Type
str

deprecated

Whether this message schema has been deprecated by a more recent version. Emits a warning when a
message of this class is received, to let consumers know that they should plan to upgrade. Defaults to
False.

Type
bool

priority

The priority for the message, if the destination queue supports it. Defaults to zero (lowest priority).

This value is taken into account in queues that have the x-max-priority argument set. Most queues in
Fedora don’t support priorities, in which case the value will be ignored.

Larger numbers indicate higher priority, you can read more about it in RabbitMQ’s documentation on
priority.

Type
int

__str__()

A human-readable representation of this message.

This should provide a detailed, long-form representation of the message. The default implementation is to
format the raw message id, topic, headers, and body.

Note: Sub-classes should override this method. It is used to create the body of email notifications and by
other tools to display messages to humans.

property agent_avatar

An URL to the avatar of the user who caused the action.

Note: Sub-classes should override this method if the default Libravatar and OpenID-based URL generator
is not appropriate.

Returns
The URL to the user’s avatar.

Return type
str or None

property agent_name

The username of the user who caused the action.

Note: Sub-classes should override this method if the message was triggered by a particular user.

76 Chapter 15. Developer Interface

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://www.rabbitmq.com/priority.html
https://www.rabbitmq.com/priority.html
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

Returns
The agent’s username.

Return type
str or None

property app_icon

An URL to the icon of the application that generated the message.

Note: Sub-classes should override this method if their application has an icon and they wish that image to
appear in applications that consume messages.

Returns
The URL to the app’s icon.

Return type
str or None

property app_name

The name of the application that generated the message.

Note: Sub-classes should override this method.

Returns
The name of the application.

Return type
str or None

property containers

List of containers affected by the action that generated this message.

Note: Sub-classes should override this method if the message pertains to one or more container images.
The data returned from this property is used to filter notifications.

Returns
A list of affected container names.

Return type
list(str)

property flatpaks

List of flatpaks affected by the action that generated this message.

Note: Sub-classes should override this method if the message pertains to one or more flatpaks. The data
returned from this property is used to filter notifications.

Returns
A list of affected flatpaks names.

15.4. Message Schemas 77

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

Return type
list(str)

property groups

List of groups affected by the action that generated this message.

Note: Sub-classes should override this method if the message pertains to a group or groups. The data
returned from this property is used to filter notifications.

Returns
A list of affected groups.

Return type
list(str)

property modules

List of modules affected by the action that generated this message.

Note: Sub-classes should override this method if the message pertains to one or more modules. The data
returned from this property is used to filter notifications.

Returns
A list of affected module names.

Return type
list(str)

property packages

List of RPM packages affected by the action that generated this message.

Note: Sub-classes should override this method if the message pertains to one or more RPM packages. The
data returned from this property is used to filter notifications.

Returns
A list of affected package names.

Return type
list(str)

property summary

A short, human-readable representation of this message.

This should provide a short summary of the message, much like the subject line of an email.

Note: Sub-classes should override this method. It is used to create the subject of email notifications, IRC
notification, and by other tools to display messages to humans in short form.

The default implementation is to simply return the message topic.

78 Chapter 15. Developer Interface

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

property url

An URL to the action that caused this message to be emitted.

Note: Sub-classes should override this method if there is a URL associated with message.

Returns
A relevant URL.

Return type
str or None

property usernames

List of users affected by the action that generated this message.

Note: Sub-classes should override this method if the message pertains to a user or users. The data returned
from this property is used to filter notifications.

Returns
A list of affected usernames.

Return type
list(str)

validate()

Validate the headers and body with the message schema, if any.

In addition to the user-provided schema, all messages are checked against the base schema which requires
certain message headers and the that body be a JSON object.

Warning: This method should not be overridden by sub-classes.

Raises

• jsonschema.ValidationError – If either the message headers or the message body are
invalid.

• jsonschema.SchemaError – If either the message header schema or the message body
schema are invalid.

15.4.2 Message Severity

Each message can have a severity associated with it. The severity is used by applications like the notification service
to determine what messages to send to users. The severity can be set at the class level, or on a message-by-message
basis. The following are valid severity levels:

15.4. Message Schemas 79

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str
https://python-jsonschema.readthedocs.io/en/latest/api/#jsonschema.SchemaError

Fedora Messaging, Release 3.5.0

DEBUG

fedora_messaging.message.DEBUG = 10

Indicates the message is for debugging or is otherwise very low priority. Users will not be notified unless they’ve
explicitly requested DEBUG level messages.

INFO

fedora_messaging.message.INFO = 20

Indicates the message is informational. End users will not receive notifications for these messages by default.
For example, automated tests passed for their package.

WARNING

fedora_messaging.message.WARNING = 30

Indicates a problem or an otherwise important problem. Users are notified of these messages when they pertain
to packages they are associated with by default. For example, one or more automated tests failed against their
package.

ERROR

fedora_messaging.message.ERROR = 40

Indicates a critically important message that users should act upon as soon as possible. For example, their package
no longer builds.

SEVERITIES

fedora_messaging.message.SEVERITIES = (10, 20, 30, 40)

A tuple of all valid severity levels

15.4.3 dumps

fedora_messaging.message.dumps(messages)
Serialize messages to a file format acceptable for loads() or for the publish CLI command. The format is a
string where each line is a JSON object that conforms to the SERIALIZED_MESSAGE_SCHEMA format.

Parameters
messages (list or Message) – The messages to serialize. Each message in the messages is
subclass of Message.

Returns
Serialized messages.

Return type
str

Raises
ValidationError – If one of the messages provided doesn’t conform to its schema.

80 Chapter 15. Developer Interface

https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

15.4.4 loads

fedora_messaging.message.loads(serialized_messages)
Deserialize messages from a file format produced by dumps(). The format is a string where each line is a JSON
object that conforms to the SERIALIZED_MESSAGE_SCHEMA format.

Parameters
serialized_messages (str) – A string made up of a JSON object per line.

Returns
Deserialized message objects.

Return type
list

Raises
ValidationError – If the string isn’t formatted properly or message doesn’t pass the message
schema validation

15.4.5 SERIALIZED_MESSAGE_SCHEMA

fedora_messaging.message.SERIALIZED_MESSAGE_SCHEMA = {'$schema':
'http://json-schema.org/draft-04/schema#', 'description': 'Schema for the JSON object
used to represent messages in a file', 'properties': {'body': {'description': 'The
message body.', 'type': 'object'}, 'headers': {'description': 'The message headers',
'properties': {'fedora_messaging_schema': {'type': 'string'},
'fedora_messaging_severity': {'enum': [10, 20, 30, 40], 'type': 'number'}, 'sent-at':
{'type': 'string'}}, 'type': 'object'}, 'id': {'description': "The message's UUID.",
'type': 'string'}, 'priority': {'description': 'The priority that the message has been
sent with.', 'type': ['integer', 'null']}, 'queue': {'description': 'The queue the
message arrived on, if any.', 'type': ['string', 'null']}, 'topic': {'description':
'The message topic', 'type': 'string'}}, 'required': ['topic', 'body'], 'type':
'object'}

The schema for each JSON object produced by dumps(), consumed by loads(), and expected by CLI commands
like “fedora-messaging publish”.

15.5 Utilities

The schema_utilsmodule contains utilities that may be useful when writing the Python API of your message schemas.

15.5.1 libravatar_url

fedora_messaging.schema_utils.libravatar_url(email=None, openid=None, size=64, default='retro')
Get the URL to an avatar from libravatar.

Either the user’s email or openid must be provided.

If you want to use Libravatar federation (through DNS), you should install and use the libravatar library
instead. Check out the libravatar.libravatar_url() function.

Parameters

• email (str) – The user’s email

15.5. Utilities 81

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#list
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

• openid (str) – The user’s OpenID

• size (int) – Size of the avatar in pixels (it’s a square).

• default (str) – Default avatar to return if not found.

Returns
The URL to the avatar image.

Return type
str

Raises
ValueError – If neither email nor openid are provided.

15.6 Exceptions

Exceptions raised by Fedora Messaging.

exception fedora_messaging.exceptions.BadDeclaration(obj_type=None, description=None,
reason=None)

Raised when declaring an object in AMQP fails.

Parameters

• obj_type (str) – The type of object being declared. One of “binding”, “queue”, or “ex-
change”.

• description (dict) – The description of the object.

• reason (str) – The reason the server gave for rejecting the declaration.

exception fedora_messaging.exceptions.BaseException

The base class for all exceptions raised by fedora_messaging.

exception fedora_messaging.exceptions.ConfigurationException(message)
Raised when there’s an invalid configuration setting

Parameters
message (str) – A detailed description of the configuration problem which is presented to the
user.

exception fedora_messaging.exceptions.ConnectionException(*args, **kwargs)
Raised if a general connection error occurred.

You may handle this exception by logging it and resending or discarding the message.

exception fedora_messaging.exceptions.ConsumeException

Base class for exceptions related to consuming.

exception fedora_messaging.exceptions.ConsumerCanceled

Raised when the server has canceled the consumer.

This can happen when the queue the consumer is subscribed to is deleted, or when the node the queue is located
on fails.

exception fedora_messaging.exceptions.Drop

Consumer callbacks should raise this to indicate they wish the message they are currently processing to be
dropped.

82 Chapter 15. Developer Interface

https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/exceptions.html#ValueError
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#dict
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

exception fedora_messaging.exceptions.HaltConsumer(exit_code=0, reason=None, requeue=False,
**kwargs)

Consumer callbacks should raise this exception if they wish the consumer to be shut down.

Parameters

• exit_code (int) – The exit code to use when halting.

• reason (str) – A reason for halting, presented to the user.

• requeue (bool) – If true, the message is re-queued for later processing.

exception fedora_messaging.exceptions.Nack

Consumer callbacks should raise this to indicate they wish the message they are currently processing to be re-
queued.

exception fedora_messaging.exceptions.NoFreeChannels

Raised when a connection has reached its channel limit

exception fedora_messaging.exceptions.PermissionException(obj_type=None, description=None,
reason=None)

Generic permissions exception.

Parameters

• obj_type (str) – The type of object being accessed that caused the permission error. May
be None if the cause is unknown.

• description (object) – The description of the object, if any. May be None.

• reason (str) – The reason the server gave for the permission error, if any. If no reason is
supplied by the server, this should be the best guess for what caused the error.

exception fedora_messaging.exceptions.PublishException(reason=None, **kwargs)
Base class for exceptions related to publishing.

exception fedora_messaging.exceptions.PublishForbidden(reason=None, **kwargs)
Raised when the broker rejects the message due to permission errors.

You may handle this exception by logging it and discarding the message, as it is likely a permanent error.

exception fedora_messaging.exceptions.PublishReturned(reason=None, **kwargs)
Raised when the broker rejects and returns the message to the publisher.

You may handle this exception by logging it and resending or discarding the message.

exception fedora_messaging.exceptions.PublishTimeout(reason=None, **kwargs)
Raised when the message could not be published in the given timeout.

This means the message was either never delivered to the broker, or that it was delivered, but never acknowledged
by the broker.

exception fedora_messaging.exceptions.ValidationError

This error is raised when a message fails validation with its JSON schema

This exception can be raised on an incoming or outgoing message. No need to catch this exception when publish-
ing, it should warn you during development and testing that you’re trying to publish a message with a different
format, and that you should either fix it or update the schema.

15.6. Exceptions 83

https://docs.python.org/3/library/functions.html#int
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#bool
https://docs.python.org/3/library/stdtypes.html#str
https://docs.python.org/3/library/functions.html#object
https://docs.python.org/3/library/stdtypes.html#str

Fedora Messaging, Release 3.5.0

15.7 Configuration

15.7.1 conf

fedora_messaging.config.conf = {}

The configuration dictionary used by fedora-messaging and consumers.

15.7.2 DEFAULTS

fedora_messaging.config.DEFAULTS = {'amqp_url':
'amqp://?connection_attempts=3&retry_delay=5', 'bindings': [{'exchange': 'amq.topic',
'queue': '', 'routing_keys': ['#']}], 'callback': None, 'client_properties': {'app':
'Unknown', 'information': 'https://fedora-messaging.readthedocs.io/en/stable/',
'product': 'Fedora Messaging with Pika', 'version': 'fedora_messaging-3.5.0 with
pika-1.3.2'}, 'consumer_config': {}, 'exchanges': {'amq.topic': {'arguments': {},
'auto_delete': False, 'durable': True, 'type': 'topic'}}, 'log_config':
{'disable_existing_loggers': False, 'formatters': {'simple': {'format': '[%(name)s
%(levelname)s] %(message)s'}}, 'handlers': {'console': {'class':
'logging.StreamHandler', 'formatter': 'simple', 'stream': 'ext://sys.stdout'}},
'loggers': {'fedora_messaging': {'handlers': ['console'], 'level': 'INFO',
'propagate': False}}, 'root': {'handlers': ['console'], 'level': 'WARNING'},
'version': 1}, 'passive_declares': False, 'publish_exchange': 'amq.topic',
'publish_priority': None, 'qos': {'prefetch_count': 10, 'prefetch_size': 0},
'queues': {'': {'arguments': {}, 'auto_delete': True, 'durable': False, 'exclusive':
True}}, 'tls': {'ca_cert': None, 'certfile': None, 'keyfile': None}, 'topic_prefix':
''}

The default configuration settings for fedora-messaging. This should not be modified and should be copied with
copy.deepcopy().

84 Chapter 15. Developer Interface

https://docs.python.org/3/library/copy.html#copy.deepcopy

CHAPTER

SIXTEEN

MESSAGE FORMAT

This documentation covers the format of AMQP messages sent by this library. If you are interested in using a language
other than Python to send or receive messages sent by Fedora applications, this document is for you.

Messages are AMQP Basic content. Basic messages have the content type, content encoding, a table of headers,
delivery mode, priority, correlation ID, reply-to, expiration, message ID, timestamp, type, user ID, and app ID fields.

16.1 Content Type

Your messages MUST have a content-type of application/json and they must be JSON objects. Consult the Mes-
sage Schemas documentation for details on message format.

16.2 Content Encoding

Your message MUST have the content-encoding property set to utf-8 and they must be encoding with UTF-8.

16.3 Message ID

The message ID field MUST be a version 4 UUID as a standard hexadecimal digit string (e.g. f81d4fae-7dec-11d0-
a765-00a0c91e6bf6).

16.4 Delivery Mode

The delivery mode of your message SHOULD be 2 (persistent) unless you know what you are doing and have a very
good reason for setting it to 1 (transient).

85

https://www.rabbitmq.com/amqp-0-9-1-reference.html
https://www.ietf.org/rfc/rfc4122.txt

Fedora Messaging, Release 3.5.0

16.5 Headers

The headers field of AMQP message allows you to set a dictionary (map) of arbitrary strings. Several header keys
are used by Fedora’s applications to determine the message schema, the importance of the message for human beings,
when it was originally sent by the application, what packages or users it relates to, and more.

16.5.1 Required

Messages must have, at a minimum, the fedora_messaging_severity, fedora_messaging_schema, and
sent-at keys.

The fedora_messaging_severity key should be set to an integer that indicates the importance of the message to
an end user, with 10 being debug-level information, 20 being informational, 30 being warning-level, and 40 being
critically important.

The fedora_messaging_schema key should be set to a string that uniquely identifies the type of message. In the
Python library this is the entry point name, which is mapped to a class containing the schema and a Python API to
interact with the message object.

The sent-at key should be a ISO8601 date time that should include the UTC offset and should not include microsec-
onds. For example: 2019-07-30T19:12:22+00:00.

The header’s json-schema is:

{
"$schema": "http://json-schema.org/draft-04/schema#",
"description": "Schema for message headers",
"type": "object",
"properties": {

"fedora_messaging_severity": {
"type": "number",
"enum": [10, 20, 30, 40],

},
"fedora_messaging_schema": {"type": "string"},
"sent-at": {"type": "string"},

},
}

16.5.2 Optional

In addition to the required headers, there are a number of optional headers you can set that have special meaning. The
general format of these headers is fedora_messaging_<object>_<id> where the <object> is one of user, rpm,
container, module, or flatpak and <id> uniquely identifies the object. Set these headers when the message pertains
to the referenced object.

For example, if the user jcline submitted a build for the python-requestsRPM, the message about that event would
have fedora_messaging_user_jcline and fedora_messaging_rpm_python-requests set.

At this time the value of the header key is not used and should always be set to a Boolean value of true.

86 Chapter 16. Message Format

Fedora Messaging, Release 3.5.0

16.6 Body

The message body must match the content-type and content-encoding. That is, it must be UTF-8 encoded JSON.
Additionally, it must be a JSON Object. Beyond that, there are no restrictions. Messages should be validated using
their JSON schema. If you are publishing a new message type, please write a json-schema for it and provide it to the
Fedora infrastructure team. It will be distributed to applications that wish to consume the message.

16.6. Body 87

Fedora Messaging, Release 3.5.0

88 Chapter 16. Message Format

CHAPTER

SEVENTEEN

CONTRIBUTOR GUIDE

Thanks for considering contributing to fedora-messaging, we really appreciate it!

17.1 Quickstart

1. Look for an existing issue about the bug or feature you’re interested in. If you can’t find an existing issue, create
a new one.

2. Fork the repository on GitHub.

3. Fix the bug or add the feature, and then write one or more tests which show the bug is fixed or the feature works.

4. Add a news fragment with a summary of the change to include in the upcoming release notes.

5. Submit a pull request and wait for a maintainer to review it.

More detailed guidelines to help ensure your submission goes smoothly are below.

Note: If you do not wish to use GitHub, please send patches to infrastructure@lists.fedoraproject.org.

17.2 Python Support

fedora-messaging supports Python 3.6 or greater. This is automatically enforced by the continuous integration (CI)
suite.

17.3 Code Style

We follow the PEP8 style guide for Python. This is automatically enforced by the CI suite.

We are using Black <https://github.com/ambv/black> to automatically format the source code. It is also checked in CI.
The Black webpage contains instructions to configure your editor to run it on the files you edit.

We use pre-commit to run a set of linters and formatters upon commit. To setup to hook for your repo clone, install
pre-commit and run pre-commit install.

89

https://github.com/fedora-infra/fedora-messaging/issues
https://github.com/fedora-infra/fedora-messaging/issues/new
https://github.com/fedora-infra/fedora-messaging
mailto:infrastructure@lists.fedoraproject.org
https://www.python.org/dev/peps/pep-0008/
https://pre-commit.com/

Fedora Messaging, Release 3.5.0

17.4 Tests

The test suites can be run using tox by simply running tox from the repository root. All code must have test coverage
or be explicitly marked as not covered using the # no-qa comment. This should only be done if there is a good reason
to not write tests.

Your pull request should contain tests for your new feature or bug fix. If you’re not certain how to write tests, we will
be happy to help you.

17.5 Release notes

To add entries to the release notes, run towncrier create <source.type> to create a news fragment file in the
news directory, where type is one of:

• feature: for new features

• bug: for bug fixes

• api: for API changes

• dev: for development-related changes

• docs: for documentation changes

• author: for contributor names

• other: for other changes

And where the source part of the filename is:

• 42 when the change is described in issue 42

• PR42 when the change has been implemented in pull request 42, and there is no associated issue

• Cabcdef when the change has been implemented in changeset abcdef, and there is no associated issue or pull
request.

• username for contributors (author extention). It should be the username part of their commits’ email address.

For example,

towncrier create PR42.feature

The contents of the news fragment must be written in RST format. See the towncrier documentation for more informa-
tion.

A preview of the release notes can be generated with towncrier --draft.

17.6 Licensing

Your commit messages must include a Signed-off-by tag with your name and e-mail address, indicating that you agree
to the Developer Certificate of Origin version 1.1:

Developer Certificate of Origin
Version 1.1

Copyright (C) 2004, 2006 The Linux Foundation and its contributors.
(continues on next page)

90 Chapter 17. Contributor guide

http://tox.readthedocs.io/
https://github.com/twisted/towncrier
https://github.com/twisted/towncrier
https://developercertificate.org/

Fedora Messaging, Release 3.5.0

(continued from previous page)

1 Letterman Drive
Suite D4700
San Francisco, CA, 94129

Everyone is permitted to copy and distribute verbatim copies of this
license document, but changing it is not allowed.

Developer's Certificate of Origin 1.1

By making a contribution to this project, I certify that:

(a) The contribution was created in whole or in part by me and I
have the right to submit it under the open source license
indicated in the file; or

(b) The contribution is based upon previous work that, to the best
of my knowledge, is covered under an appropriate open source
license and I have the right under that license to submit that
work with modifications, whether created in whole or in part
by me, under the same open source license (unless I am
permitted to submit under a different license), as indicated
in the file; or

(c) The contribution was provided directly to me by some other
person who certified (a), (b) or (c) and I have not modified
it.

(d) I understand and agree that this project and the contribution
are public and that a record of the contribution (including all
personal information I submit with it, including my sign-off) is
maintained indefinitely and may be redistributed consistent with
this project or the open source license(s) involved.

Use git commit -s to add the Signed-off-by tag.

17.7 Releasing

When cutting a new release, follow these steps:

• update the version in pyproject.toml

• add missing authors to the release notes fragments by changing to the news directory and running the
get-authors.py script, but check for duplicates and errors

• generate the changelog by running poetry run towncrier build

• adjust the release notes in docs/changelog.rst

• generate the docs with tox -e docs and check them in docs/_build/html

• change the Development Status classifier in pyproject.toml if necessary

• commit the changes

17.7. Releasing 91

Fedora Messaging, Release 3.5.0

• push the commit to the upstream Github repository (via a PR or not).

• change to the stable branch and merge the develop branch

• run the checks with tox one last time to be sure

• tag the commit with -s to generate a signed tag

• push the commit to the upstream Github repository with git push and the new tag with git push --tags

• generate a tarball and push to PyPI with the commands:

python setup.py sdist bdist_wheel
twine upload -s dist/*

• create the release on GitHub and copy the release notes in there

• deploy and announce

92 Chapter 17. Contributor guide

https://github.com/fedora-infra/fedora-messaging/tags

CHAPTER

EIGHTEEN

RELEASE NOTES

18.1 3.5.0 (2024-03-20)

18.1.1 Features

• Add a replay command (#332)

• Add support Python 3.11 and 3.12, drop support for Python 3.6 and 3.7

• Better protection against invalid bodies breaking the headers generation and the instanciation of a message

• Testing framework: make the sent messages available in the context manager

18.1.2 Documentation Improvements

• Add SECURITY.md for project security policy (PR#314)

• Add fedora-messaging-git-hook-messages to the known schema packages

18.1.3 Development Changes

• Make the tests use the pytest fixtures and assert system (#961b82d)

• Make fedora-messaging use poetry (#294)

• Add some generic pre-commit checks

• Don’t distribute the tests in the wheel

18.1.4 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Thibaut Batale

• Khaled Achech

• Lenka Segura

• Ryan Lerch

93

https://github.com/fedora-infra/fedora-messaging/issues/332
https://github.com/fedora-infra/fedora-messaging/pull/314
https://github.com/fedora-infra/fedora-messaging/issues/961b82d
https://github.com/fedora-infra/fedora-messaging/issues/294

Fedora Messaging, Release 3.5.0

18.2 3.4.1 (2023-05-26)

18.2.1 Bug Fixes

• Fix CI (0f2e39c)

18.3 3.4.0 (2023-05-26)

18.3.1 Features

• Mirror the message priority in the headers (eba336b)

18.4 3.3.0 (2023-03-31)

18.4.1 Features

• Add support for asyncio-based callbacks in the consumer. As a consequence, the Twisted reactor used by the
CLI is now asyncio. (PR#282)

18.4.2 Documentation Improvements

• Improve documentation layout, and add some documentation on the message schemas. (1fa8998)

• Add koji-fedoramessaging-messages to the list of known schemas. (ef12fa2)

18.4.3 Development Changes

• Update pre-commit linters. (0efdde1)

18.5 3.2.0 (2022-10-17)

18.5.1 Features

• Add a priority property to messages, and a default priority in the configuration (PR#275)

• Add a message schema attribute and some documentation to help deprecate and upgrade message schemas (#227)

94 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/commit/0f2e39c
https://github.com/fedora-infra/fedora-messaging/commit/eba336b
https://github.com/fedora-infra/fedora-messaging/pull/282
https://github.com/fedora-infra/fedora-messaging/commit/1fa8998
https://github.com/fedora-infra/fedora-messaging/commit/ef12fa2
https://github.com/fedora-infra/fedora-messaging/commit/0efdde1
https://github.com/fedora-infra/fedora-messaging/pull/275
https://github.com/fedora-infra/fedora-messaging/issues/227

Fedora Messaging, Release 3.5.0

18.5.2 Other Changes

• Use tomllib from the standard library on Python 3.11 and above, fallback to tomli otherwise. (PR#274)

18.5.3 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Akashdeep Dhar

• Aurélien Bompard

• Erol Keskin

• Miro Hrončok

• Stephen Coady

18.6 3.1.0 (2022-09-13)

18.6.1 Features

• Add the app_name and agent_name properties to message schemas (PR#272)

• Added “groups” property to message schemas. This property can be used if an event affects a list of groups.
(#252)

18.7 3.0.2 (2022-05-19)

18.7.1 Development Changes

• Fix CI in Github actions (6257100)

• Update pre-commit checkers (1d35a5d)

• Fix Packit configuration (d2ea85f)

18.7.2 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Akashdeep Dhar

• Aurélien Bompard

18.6. 3.1.0 (2022-09-13) 95

https://github.com/fedora-infra/fedora-messaging/pull/274
https://github.com/fedora-infra/fedora-messaging/pull/272
https://github.com/fedora-infra/fedora-messaging/issues/252
https://github.com/fedora-infra/fedora-messaging/commit/6257100
https://github.com/fedora-infra/fedora-messaging/commit/1d35a5d
https://github.com/fedora-infra/fedora-messaging/commit/d2ea85f

Fedora Messaging, Release 3.5.0

18.8 3.0.1 (2022-05-12)

18.8.1 Development Changes

• Add packit configuration allowing us to have automatic downstream RPM builds (#259)

• Don’t build universal wheels since we don’t run on Python 2 anymore (e8c5f4c)

18.8.2 Documentation Improvements

• Add some schema packages to the docs (03e7f42)

• Change the example email addresses (1555742)

18.8.3 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Akashdeep Dhar

• Aurélien Bompard

18.9 3.0.0 (2021-12-14)

18.9.1 API Changes

• Queues created by the CLI are now non-durable, auto-deleted and exclusive, as server-named queues are.
(PR#239)

• It is no longer necessary to declare a queue in the configuration file: a server-named queue will be created.
Configured bindings which do not specify a queue name will be applied to the server-named queue. (PR#239)

• Drop support for Python 2 (PR#246)

• Drop the Twisted classes that had been flagged as deprecated. Drop the deprecated Message._body property.
Refactor the consuming code into the Consumer class. (PR#249)

18.9.2 Features

• Support anonymous (server-named) queues. (PR#239)

• Support Python 3.10 (PR#250)

• Raise PublishForbidden exception immediately if publishing to virtual host is denied rather than waiting until
timeout occurs. (#203)

96 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/issues/259
https://github.com/fedora-infra/fedora-messaging/commit/e8c5f4c
https://github.com/fedora-infra/fedora-messaging/commit/03e7f42
https://github.com/fedora-infra/fedora-messaging/commit/1555742
https://github.com/fedora-infra/fedora-messaging/pull/239
https://github.com/fedora-infra/fedora-messaging/pull/239
https://github.com/fedora-infra/fedora-messaging/pull/246
https://github.com/fedora-infra/fedora-messaging/pull/249
https://github.com/fedora-infra/fedora-messaging/pull/239
https://github.com/fedora-infra/fedora-messaging/pull/250
https://www.rabbitmq.com/access-control.html
https://github.com/fedora-infra/fedora-messaging/issues/203

Fedora Messaging, Release 3.5.0

18.9.3 Bug Fixes

• Fixed validation exception of queue field on serialized schemas. (#240)

18.9.4 Documentation Improvements

• Improve release notes process documentation. (PR#238)

• Build a list of available topics in the documentation from known schema packages (PR#242)

18.9.5 Development Changes

• Start using pre-commit for linters and formatters (732c7fb)

18.9.6 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• David Jimenez

• Michal Konečný

• Onur Ozkan

18.10 2.1.0 (2021-05-12)

18.10.1 Features

• Improve the testing module to check message topics and bodies separately, and to use the rewritten assert that
pytest provides (PR#230)

• Handle topic authorization by raising a PublishForbidden exception instead of being stuck in a retry loop
(PR#235)

• Test on Python 3.8 and 3.9 (PR#237)

18.10.2 Bug Fixes

• Require setuptools, as pkg_resources is used (PR#233)

18.10. 2.1.0 (2021-05-12) 97

https://github.com/fedora-infra/fedora-messaging/issues/240
https://github.com/fedora-infra/fedora-messaging/pull/238
https://github.com/fedora-infra/fedora-messaging/pull/242
https://github.com/fedora-infra/fedora-messaging/commit/732c7fb
https://github.com/fedora-infra/fedora-messaging/pull/230
https://www.rabbitmq.com/access-control.html#topic-authorisation
https://github.com/fedora-infra/fedora-messaging/pull/235
https://github.com/fedora-infra/fedora-messaging/pull/237
https://github.com/fedora-infra/fedora-messaging/pull/233

Fedora Messaging, Release 3.5.0

18.10.3 Development Changes

• Update test fixture keys to 4096 bits (PR#232)

• Use Github Actions for CI (PR#234)

18.10.4 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Jeremy Cline

• Miro Hrončok

• Pierre-Yves Chibon

18.11 2.0.2 (2020-08-04)

18.11.1 Bug Fixes

• Set the QoS on the channel that is created for the consumer (#223)

18.11.2 Documentation Improvements

• When running fedora-messaging consume, the callback module should not contain a call to api.consume()
or it will block. (df4055f)

• Update the schema docs (PR#219)

• Fix quickstart cert file links (PR#222)

• Fix the docs about exceptions being wrapped by HaltConsumer (#215)

18.11.3 Other Changes

• Only try to restart fm-consumer@ services every 60 seconds (PR#214)

18.12 2.0.1 (2020-01-02)

18.12.1 Bug Fixes

• Fix handling of new connections after a publish timeout (#212)

98 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/pull/232
https://github.com/fedora-infra/fedora-messaging/pull/234
https://github.com/fedora-infra/fedora-messaging/issues/223
https://github.com/fedora-infra/fedora-messaging/commit/df4055f
https://github.com/fedora-infra/fedora-messaging/pull/219
https://github.com/fedora-infra/fedora-messaging/pull/222
https://github.com/fedora-infra/fedora-messaging/issues/215
https://github.com/fedora-infra/fedora-messaging/pull/214
https://github.com/fedora-infra/fedora-messaging/issues/212

Fedora Messaging, Release 3.5.0

18.13 2.0.0 (2019-12-03)

18.13.1 Dependency Changes

• Drop official Python 3.4 and 3.5 support

• Bump the pika requirement to 1.0.1+

• New dependency: Crochet

18.13.2 API Changes

• Move all APIs to use the Twisted-managed connection. There are a few minor changes here which slightly change
the APIs:

1. Publishing now raises a PublishTimeout when the timeout is reached (30 seconds by default).

2. Previously, the Twisted consume API did not validate arguments like the synchronous version did, so it
now raises a ValueError on invalid arguments instead of crashing in some undefined way.

3. Calling publish from the Twisted reactor thread now raises an exception instead of blocking the reactor
thread.

4. Consumer exceptions are not re-raised as HaltConsumer exceptions anymore, the original exception bub-
bles up and has to be handled by the application.

18.13.3 Features

• The fedora-messaging cli now has 2 new sub-commands: publish and record. (PR#43)

• Log the failure traceback on connection ready failures.

18.13.4 Bug Fixes

• Fix an issue where reconnection to the server would fail. (#208)

• Don’t declare exchanges when consuming. (#171)

• Fix Twisted legacy logging (it does not accept format parameters).

• Handle ConnectionLost errors in the v2 Factory.

18.13.5 Development Changes

• Many Twisted-related tests were added.

• Include tests for sample schema package.

• Update the dumps and loads functions for a new message format.

18.13. 2.0.0 (2019-12-03) 99

https://crochet.readthedocs.io/en/stable/
https://github.com/fedora-infra/fedora-messaging/pull/43
https://github.com/fedora-infra/fedora-messaging/issues/208
https://github.com/fedora-infra/fedora-messaging/issues/171

Fedora Messaging, Release 3.5.0

18.13.6 Documentation Improvements

• Document that logging is only set up for consumers.

• Update the six intersphinx URL to fix the docs build.

• Add the “conf” and “DEFAULTS” variables to the API documentation.

• Update example config: extra properties, logging.

• Document a quick way to setup logging.

• Document the sent-at header in messages.

• Create a quick-start guide.

• Clarify queues are only deleted if unused.

• Wire-format: improve message properties documentation.

• Note the addition client properties in the config docs.

18.13.7 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Adam Williamson

• dvejmz

• Jeremy Cline

• Randy Barlow

• Shraddha Agrawal

• Sebastian Wojciechowski

18.14 1.7.2 (2019-08-02)

18.14.1 Bug Fixes

• Fix variable substitution in log messages. (PR#200)

• Add MANIFEST.in and include tests for sample schema package. (PR#197)

18.14.2 Documentation Improvements

• Document the sent-at header in messages. (PR#199)

• Create a quick-start guide. (PR#196)

100 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/pull/200
https://github.com/fedora-infra/fedora-messaging/pull/197
https://github.com/fedora-infra/fedora-messaging/pull/199
https://github.com/fedora-infra/fedora-messaging/pull/196

Fedora Messaging, Release 3.5.0

18.14.3 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Adam Williamson

• Aurélien Bompard

• Jeremy Cline

• Shraddha Agrawal

18.15 v1.7.1 (2019-06-24)

18.15.1 Bug Fixes

• Don’t declare exchanges when consuming using the synchronous fedora_messaging.api.consume() API,
which was causing consuming to fail from the Fedora broker (PR#191)

18.15.2 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Randy Barlow

• Aurélien Bompard

• Jeremy Cline

• Adam Williamson

18.15.3 Documentation Improvements

• Document some additional app properties and add a note about setting up logging in the fedora.toml and
stg.fedora.toml configuration files (PR#188)

• Document how to setup logging in the consuming snippets so any problems are logged to stdout (PR#192)

• Document that logging is only set up for consumers (#181)

• Document the fedora_messaging.config.conf and fedora_messaging.config.DEFAULTS variables in
the API documentation (#182)

18.16 v1.7.0 (2019-05-21)

18.16.1 Features

• “fedora-messaging consume” now accepts a “–callback-file” argument which will load a callback function from
an arbitrary Python file. Previously, it was required that the callback be in the Python path (#159).

18.15. v1.7.1 (2019-06-24) 101

https://github.com/fedora-infra/fedora-messaging/pull/191
https://github.com/fedora-infra/fedora-messaging/pull/188
https://github.com/fedora-infra/fedora-messaging/pull/192
https://github.com/fedora-infra/fedora-messaging/issues/181
https://github.com/fedora-infra/fedora-messaging/issues/182
https://github.com/fedora-infra/fedora-messaging/issues/159

Fedora Messaging, Release 3.5.0

18.16.2 Bug Fixes

• Fix a bug where publishes that failed due to certain connection errors were not retried (#175).

• Fix a bug where AMQP protocol errors did not reset the connection used for publishing messages. This would
result in publishes always failing with a ConnectionError (#178).

18.16.3 Documentation Improvements

• Document the body attribute on the Message class (#164).

• Clearly document what properties message schema classes should override (#166).

• Re-organize the consumer documentation to make the consuming API clearer (#168).

18.16.4 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Randy Barlow

• Aurélien Bompard

• Jeremy Cline

• Dusty Mabe

18.17 v1.6.1 (2019-04-17)

18.17.1 Bug Fixes

• Fix a bug in publishing where if the broker closed the connection, the client would not properly dispose of the
connection object and publishing would fail forever (PR#157).

• Fix a bug in the fedora_messaging.api.twisted_consume() function where if the user did not have per-
missions to read from the specified queue which had already been declared, the Deferred that was returned never
fired. It now errors back with a fedora_messaging.exceptions.PermissionException (PR#160).

18.17.2 Development Changes

• Stop pinning pytest to 4.0 or less as the incompatibility with pytest-twisted has been resolved (PR#158).

18.17.3 Other Changes

• Include commands to connect to the Fedora broker in the documentation (PR#154).

102 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/issues/175
https://github.com/fedora-infra/fedora-messaging/pull/178
https://github.com/fedora-infra/fedora-messaging/issues/164
https://github.com/fedora-infra/fedora-messaging/issues/166
https://github.com/fedora-infra/fedora-messaging/issues/168
https://github.com/fedora-infra/fedora-messaging/pull/157
https://github.com/fedora-infra/fedora-messaging/pull/160
https://github.com/fedora-infra/fedora-messaging/pull/158
https://github.com/fedora-infra/fedora-messaging/pull/154

Fedora Messaging, Release 3.5.0

18.17.4 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Jeremy Cline

18.18 v1.6.0 (2019-04-04)

18.18.1 Dependency Changes

• Twisted is no longer an optional dependency: fedora-messaging requires Twisted 12.2 or greater.

18.18.2 Features

• A new API, fedora_messaging.api.twisted_consume(), has been added to support consuming using the
popular async framework Twisted. The fedora-messaging command-line interface has been switched to use this
API. As a result, Twisted 12.2+ is now a dependency of fedora-messsaging. Users of this new API are not affected
by Issue #130 (PR#139).

18.18.3 Bug Fixes

• Only prepend the topic_prefix on outgoing messages. Previously, the topic prefix was incorrectly applied to
incoming messages (#143).

18.18.4 Documentation

• Add a note to the tutorial on how to instal the library and RabbitMQ in containers (PR#141).

• Document how to access the Fedora message broker from outside the Fedora infrastructure VPN. Users of fedmsg
can now migrate to fedora-messaging for consumers outside Fedora’s infrastructure. Consult the new documen-
tation at Fedora’s Public Broker for details (PR#149).

18.18.5 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Jeremy Cline

• Shraddha Agrawal

18.18. v1.6.0 (2019-04-04) 103

https://github.com/fedora-infra/fedora-messaging/issues/130
https://github.com/fedora-infra/fedora-messaging/pull/139
https://github.com/fedora-infra/fedora-messaging/issues/143
https://github.com/fedora-infra/fedora-messaging/pull/141
https://github.com/fedora-infra/fedora-messaging/pull/149

Fedora Messaging, Release 3.5.0

18.19 v1.5.0 (2019-02-28)

18.19.1 Dependency Changes

• Replace the dependency on pytoml with toml (#132).

18.19.2 Features

• Support passive declarations for locked-down brokers (#136).

18.19.3 Bug Fixes

• Fix a bug in the sample schema pachage (#135).

18.19.4 Development Changes

• Switch to Mergify v2 (#129).

18.19.5 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Jeremy Cline

• Michal Konečný

• Shraddha Agrawal

18.20 v1.4.0 (2019-02-07)

18.20.1 Features

• The topic_prefix configuration value has been added to automatically add a prefix to the topic of all outgoing
messages. (#121)

• Support for Pika 0.13. (#126)

• Add a systemd service file for consumers.

104 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/issues/132
https://github.com/fedora-infra/fedora-messaging/issues/136
https://github.com/fedora-infra/fedora-messaging/issues/135
https://github.com/fedora-infra/fedora-messaging/pull/129
https://github.com/fedora-infra/fedora-messaging/issues/121
https://github.com/fedora-infra/fedora-messaging/issues/126

Fedora Messaging, Release 3.5.0

18.20.2 Development Changes

• Use Bandit for security checking.

18.20.3 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

18.21 v1.3.0 (2019-01-24)

18.21.1 API Changes

• The Message._body attribute is renamed to body, and is now part of the public API. (PR#119)

18.21.2 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Jeremy Cline

18.22 v1.2.0 (2019-01-21)

18.22.1 Features

• The fedora_messaging.api.consume() API now accepts a “queues” keyword which specifies the queues to
declare and consume from, and the “fedora-messaging” CLI makes use of this (PR#107)

• Utilities were added in the schema_utils module to help write the Python API of your message schemas
(PR#108)

• No long require “–exchange”, “–queue-name”, and “–routing-key” to all be specified when using “fedora-
messaging consume”. If one is not supplied, a default is chosen. These defaults are documented in the command’s
manual page (PR#117)

18.22.2 Bug Fixes

• Fix the “consumer” setting in config.toml.example to point to a real Python path (PR#104)

• fedora-messaging consume now actually uses the –queue-name and –routing-key parameter provided to it, and
–routing-key can now be specified multiple times as was documented (PR#105)

• Fix the equality check on fedora_messaging.message.Message objects to exclude the ‘sent-at’ header
(PR#109)

• Documentation for consumers indicated any callable object was acceptable to use as a callback as long as it
accepted a single positional argument (the message). However, the implementation required that the callable be
a function or a class, which it then instantiated. This has been fixed and you may now use any callable object,
such as a method or an instance of a class that implements __call__ (PR#110)

18.21. v1.3.0 (2019-01-24) 105

https://github.com/fedora-infra/fedora-messaging/pull/119
https://github.com/fedora-infra/fedora-messaging/pull/107
https://github.com/fedora-infra/fedora-messaging/pull/108
https://github.com/fedora-infra/fedora-messaging/pull/117
https://github.com/fedora-infra/fedora-messaging/pull/104
https://github.com/fedora-infra/fedora-messaging/pull/105
https://github.com/fedora-infra/fedora-messaging/pull/109
https://github.com/fedora-infra/fedora-messaging/pull/110

Fedora Messaging, Release 3.5.0

• Fix an issue where the fedora-messaging CLI would only log if a configuration file was explicitly supplied
(PR#113)

18.22.3 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Jeremy Cline

• Sebastian Wojciechowski

• Tomas Tomecek

18.23 v1.1.0 (2018-11-13)

18.23.1 Features

• Initial work on a serialization format for fedora_messaging.message.Message and APIs for loading and
storing messages. This is intended to make it easy to record and replay messages for testing purposes. (#84)

• Add a module, fedora_messaging.testing, to add useful test helpers. Check out the module documentation
for details! (#100)

18.23.2 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Jeremy Cline

• Sebastian Wojciechowski

18.24 v1.0.1 (2018-10-10)

18.24.1 Bug Fixes

• Fix a compatibility issue in Twisted between pika 0.12 and 1.0. (#97)

18.25 v1.0.0 (2018-10-10)

18.25.1 API Changes

• The unused exchange parameter from the PublisherSession was removed (PR#56)

• The setupRead API in the Twisted protocol has been removed and replaced with consume and cancel APIs
which allow for multiple consumers with multiple callbacks (PR#72)

• The name of the entry point is now used to identify the message type (PR#89)

106 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/pull/113
https://github.com/fedora-infra/fedora-messaging/issues/84
https://github.com/fedora-infra/fedora-messaging/issues/100
https://github.com/fedora-infra/fedora-messaging/issues/97
https://github.com/fedora-infra/fedora-messaging/pull/56
https://github.com/fedora-infra/fedora-messaging/pull/72
https://github.com/fedora-infra/fedora-messaging/pull/89

Fedora Messaging, Release 3.5.0

18.25.2 Features

• Ensure proper TLS client cert checking with service_identity (PR#51)

• Support Python 3.7 (PR#53)

• Compatibility with Click 7.x (PR#86)

• The complete set of valid severity levels is now available at fedora_messaging.api.SEVERITIES (PR#60)

• A queue attribute is present on received messages with the name of the queue it arrived on (PR#65)

• The wire format of fedora-messaging is now documented (PR#88)

18.25.3 Development Changes

• Use towncrier to generate the release notes (PR#67)

• Check that our dependencies have Free licenses (PR#68)

• Test coverage is now at 97%.

18.25.4 Other Changes

• The library is available in Fedora as fedora-messaging.

18.25.5 Contributors

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Jeremy Cline

• Michal Konečný

• Sebastian Wojciechowski

18.26 v1.0.0b1

18.26.1 API Changes

• fedora_messaging.message.Message.summary is now a property rather than a method (#25).

• The non-functional --amqp-url parameter has been removed from the CLI (#49).

18.26. v1.0.0b1 107

https://github.com/fedora-infra/fedora-messaging/pull/51
https://github.com/fedora-infra/fedora-messaging/pull/53
https://click.palletsprojects.com/
https://github.com/fedora-infra/fedora-messaging/pull/86
https://github.com/fedora-infra/fedora-messaging/pull/60
https://github.com/fedora-infra/fedora-messaging/pull/65
https://github.com/fedora-infra/fedora-messaging/pull/88
https://github.com/hawkowl/towncrier
https://github.com/fedora-infra/fedora-messaging/pull/67
https://github.com/fedora-infra/fedora-messaging/pull/68
https://github.com/fedora-infra/fedora-messaging/pull/25
https://github.com/fedora-infra/fedora-messaging/pull/49

Fedora Messaging, Release 3.5.0

18.26.2 Features

• Configuration parsing failures now produce point to the line and column of the parsing error (#21).

• fedora_messaging.message.Message now come with a set of standard accessors (#32).

• Consumers can now specify whether a message should be re-queued when halting (#44).

• An example consumer that prints to standard output now ships with fedora-messaging. It can be used by running
fedora-messaging consume --callback="fedora_messaging.example:printer" (#40).

• fedora_messaging.message.Message now have a severity associated with them (#48).

18.26.3 Bug Fixes

• Fix an issue where invalid or missing configuration files resulted in a traceback rather than a formatted error
message from the CLI (#21).

• Client authentication with x509 now works with both the synchronous API and the Twisted API (#29, #35).

• fedora_messaging.api.publish() no longer raises a pika.exceptions.ChannelClosed exception. In-
stead, it raises a fedora_messaging.exceptions.ConnectionException (#31).

• fedora_messaging.api.consume() is now documented to raise a ValueError when the callback isn’t
callable (#47).

18.26.4 Development Features

• The fedora-messaging code base is now compliant with the Black Python formatter and this is enforced with
continuous integration.

• Test coverage is moving up and to the right.

Many thanks to the contributors of bug reports, pull requests, and pull request reviews for this release:

• Aurélien Bompard

• Clement Verna

• Ken Dreyer

• Jeremy Cline

• Miroslav Suchý

• Patrick Uiterwijk

• Sebastian Wojciechowski

18.27 v1.0.0a1

The initial alpha release for fedora-messaging v1.0.0. The API is not expected to change significantly between this
release and the final v1.0.0 release, but it may do so if serious flaws are discovered in it.

108 Chapter 18. Release Notes

https://github.com/fedora-infra/fedora-messaging/pull/21
https://github.com/fedora-infra/fedora-messaging/pull/32
https://github.com/fedora-infra/fedora-messaging/pull/44
https://github.com/fedora-infra/fedora-messaging/pull/40
https://github.com/fedora-infra/fedora-messaging/pull/48
https://github.com/fedora-infra/fedora-messaging/pull/21
https://github.com/fedora-infra/fedora-messaging/pull/29
https://github.com/fedora-infra/fedora-messaging/pull/35
https://pika.readthedocs.io/en/latest/modules/exceptions.html#pika.exceptions.ChannelClosed
https://github.com/fedora-infra/fedora-messaging/pull/31
https://docs.python.org/3/library/exceptions.html#ValueError
https://github.com/fedora-infra/fedora-messaging/pull/47
https://github.com/ambv/black

PYTHON MODULE INDEX

f
fedora_messaging.config, 11
fedora_messaging.exceptions, 82
fedora_messaging.message, 74
fedora_messaging.schema_utils, 81
fedora_messaging.signals, 73
fedora_messaging.testing, 41

109

Fedora Messaging, Release 3.5.0

110 Python Module Index

INDEX

Symbols
__str__() (fedora_messaging.message.Message

method), 76

A
agent_avatar (fedora_messaging.message.Message

property), 76
agent_name (fedora_messaging.message.Message prop-

erty), 76
app_icon (fedora_messaging.message.Message prop-

erty), 77
app_name (fedora_messaging.message.Message prop-

erty), 77

B
BadDeclaration, 82
BaseException, 82
body (fedora_messaging.message.Message attribute), 75
body_schema (fedora_messaging.message.Message at-

tribute), 75

C
callback (fedora_messaging.api.Consumer attribute),

71
cancel() (fedora_messaging.api.Consumer method), 72
conf (in module fedora_messaging.config), 84
ConfigurationException, 82
ConnectionException, 82
consume() (in module fedora_messaging.api), 72
ConsumeException, 82
Consumer (class in fedora_messaging.api), 71
ConsumerCanceled, 82
containers (fedora_messaging.message.Message prop-

erty), 77

D
DEBUG (in module fedora_messaging.message), 80
DEFAULTS (in module fedora_messaging.config), 84
deprecated (fedora_messaging.message.Message

attribute), 76
Drop, 82

dumps() (in module fedora_messaging.message), 80

E
ERROR (in module fedora_messaging.message), 80

F
fedora_messaging.config

module, 11
fedora_messaging.exceptions

module, 82
fedora_messaging.message

module, 74
fedora_messaging.schema_utils

module, 81
fedora_messaging.signals

module, 73
fedora_messaging.testing

module, 41
flatpaks (fedora_messaging.message.Message prop-

erty), 77

G
groups (fedora_messaging.message.Message property),

78

H
HaltConsumer, 82
headers_schema (fedora_messaging.message.Message

attribute), 75

I
id (fedora_messaging.message.Message attribute), 75
INFO (in module fedora_messaging.message), 80

L
libravatar_url() (in module fe-

dora_messaging.schema_utils), 81
loads() (in module fedora_messaging.message), 81

M
Message (class in fedora_messaging.message), 74

111

Fedora Messaging, Release 3.5.0

mock_sends() (in module fedora_messaging.testing), 41
module

fedora_messaging.config, 11
fedora_messaging.exceptions, 82
fedora_messaging.message, 74
fedora_messaging.schema_utils, 81
fedora_messaging.signals, 73
fedora_messaging.testing, 41

modules (fedora_messaging.message.Message property),
78

N
Nack, 83
NoFreeChannels, 83

P
packages (fedora_messaging.message.Message prop-

erty), 78
PermissionException, 83
pre_publish_signal (in module fe-

dora_messaging.api), 73
priority (fedora_messaging.message.Message at-

tribute), 76
publish() (in module fedora_messaging.api), 70
publish_failed_signal (in module fe-

dora_messaging.api), 74
publish_signal (in module fedora_messaging.api), 73
PublishException, 83
PublishForbidden, 83
PublishReturned, 83
PublishTimeout, 83

Q
queue (fedora_messaging.api.Consumer attribute), 71
queue (fedora_messaging.message.Message attribute),

75

R
result (fedora_messaging.api.Consumer attribute), 72

S
SERIALIZED_MESSAGE_SCHEMA (in module fe-

dora_messaging.message), 81
SEVERITIES (in module fedora_messaging.message), 80
severity (fedora_messaging.message.Message at-

tribute), 75
summary (fedora_messaging.message.Message property),

78

T
topic (fedora_messaging.message.Message attribute),

75
twisted_consume() (in module fedora_messaging.api),

71

U
url (fedora_messaging.message.Message property), 78
usernames (fedora_messaging.message.Message prop-

erty), 79

V
validate() (fedora_messaging.message.Message

method), 79
ValidationError, 83

W
WARNING (in module fedora_messaging.message), 80

112 Index

	Installation
	PyPI
	Fedora

	Quick Start
	Local Broker
	Fedora’s Public Broker
	Getting Connected

	Fedora’s Restricted Broker

	Configuration
	Generic Options
	amqp_url
	passive_declares
	tls
	client_properties
	exchanges
	log_config

	Publisher Options
	publish_exchange
	topic_prefix
	publish_priority

	Consumer Options
	queues
	bindings
	callback
	consumer_config
	qos

	Publishing
	Overview
	Topics
	Headers
	Body

	Introduction
	Handling Errors
	Validation
	Connection Errors
	Rejected Messages

	Message Schemas
	Schema
	Header Schema
	Body Schema
	Example Schema

	Message Conventions
	Schema are Immutable
	Provide Accessors
	Useful Accessors

	Packaging
	Upgrade and deprecation

	Consumers
	Introduction
	Command Line Interface
	Consumer API
	The Callback
	Exceptions
	Synchronous and Asynchronous Calls
	Consumer Configuration

	systemd Service

	Available Schemas
	anitya
	bodhi
	Copr
	fedocal
	elections
	git
	hotness
	planet
	ansible
	Koji
	mdapi
	fas
	nuancier
	Pagure

	Testing
	Command Line Interface Manuals
	fedora-messaging
	Synopsis
	Description
	Options
	Commands
	consume
	publish
	Options

	record

	Exit codes
	consume
	publish

	Signals
	consume

	Systemd service
	Help

	Installation
	Installing the library
	Setting up RabbitMQ
	Configuration

	Using the API
	Publishing
	Listening
	Python script
	Python callback
	Round robin

	JSON schemas
	Creating the schema package
	Writing the schema
	Schema format
	Example
	Human readable representation
	Severity

	Testing it
	Using it
	Updating it

	Handling exceptions
	When publishing
	When consuming

	Converting a fedmsg application
	Converting publishers
	Converting a Flask app
	JSON schema
	Wrapper function
	Testing

	Converting a Pyramid app
	JSON Schema
	Sending the messages
	Testing it

	Converting consumers
	Configuration
	Init method
	Wrapper function
	Testing

	Developer Interface
	Publishing
	publish

	Subscribing
	twisted_consume
	Consumer
	consume

	Signals
	pre_publish_signal
	publish_signal
	publish_failed_signal

	Message Schemas
	Message
	Message Severity
	DEBUG
	INFO
	WARNING
	ERROR
	SEVERITIES

	dumps
	loads
	SERIALIZED_MESSAGE_SCHEMA

	Utilities
	libravatar_url

	Exceptions
	Configuration
	conf
	DEFAULTS

	Message Format
	Content Type
	Content Encoding
	Message ID
	Delivery Mode
	Headers
	Required
	Optional

	Body

	Contributor guide
	Quickstart
	Python Support
	Code Style
	Tests
	Release notes
	Licensing
	Releasing

	Release Notes
	3.5.0 (2024-03-20)
	Features
	Documentation Improvements
	Development Changes
	Contributors

	3.4.1 (2023-05-26)
	Bug Fixes

	3.4.0 (2023-05-26)
	Features

	3.3.0 (2023-03-31)
	Features
	Documentation Improvements
	Development Changes

	3.2.0 (2022-10-17)
	Features
	Other Changes
	Contributors

	3.1.0 (2022-09-13)
	Features

	3.0.2 (2022-05-19)
	Development Changes
	Contributors

	3.0.1 (2022-05-12)
	Development Changes
	Documentation Improvements
	Contributors

	3.0.0 (2021-12-14)
	API Changes
	Features
	Bug Fixes
	Documentation Improvements
	Development Changes
	Contributors

	2.1.0 (2021-05-12)
	Features
	Bug Fixes
	Development Changes
	Contributors

	2.0.2 (2020-08-04)
	Bug Fixes
	Documentation Improvements
	Other Changes

	2.0.1 (2020-01-02)
	Bug Fixes

	2.0.0 (2019-12-03)
	Dependency Changes
	API Changes
	Features
	Bug Fixes
	Development Changes
	Documentation Improvements
	Contributors

	1.7.2 (2019-08-02)
	Bug Fixes
	Documentation Improvements
	Contributors

	v1.7.1 (2019-06-24)
	Bug Fixes
	Contributors
	Documentation Improvements

	v1.7.0 (2019-05-21)
	Features
	Bug Fixes
	Documentation Improvements
	Contributors

	v1.6.1 (2019-04-17)
	Bug Fixes
	Development Changes
	Other Changes
	Contributors

	v1.6.0 (2019-04-04)
	Dependency Changes
	Features
	Bug Fixes
	Documentation
	Contributors

	v1.5.0 (2019-02-28)
	Dependency Changes
	Features
	Bug Fixes
	Development Changes
	Contributors

	v1.4.0 (2019-02-07)
	Features
	Development Changes
	Contributors

	v1.3.0 (2019-01-24)
	API Changes
	Contributors

	v1.2.0 (2019-01-21)
	Features
	Bug Fixes
	Contributors

	v1.1.0 (2018-11-13)
	Features
	Contributors

	v1.0.1 (2018-10-10)
	Bug Fixes

	v1.0.0 (2018-10-10)
	API Changes
	Features
	Development Changes
	Other Changes
	Contributors

	v1.0.0b1
	API Changes
	Features
	Bug Fixes
	Development Features

	v1.0.0a1

	Python Module Index
	Index

